Collinearity of points MCQ Quiz in मराठी - Objective Question with Answer for Collinearity of points - मोफत PDF डाउनलोड करा

Last updated on Apr 1, 2025

पाईये Collinearity of points उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Collinearity of points एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Collinearity of points MCQ Objective Questions

Top Collinearity of points MCQ Objective Questions

Collinearity of points Question 1:

If the points (2, - 1, 2), (1, 2, - 3) and (3, k, 7) are collinear, then find the value of k.

  1. 3
  2. - 3
  3. 4
  4. - 4

Answer (Detailed Solution Below)

Option 4 : - 4

Collinearity of points Question 1 Detailed Solution

CONCEPT:

If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then 

CALCULATION:
 
Given: The points (2, - 1, 2), (1, 2, - 3) and (3, k, 7) are collinear
As we know that, if the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then 
Here, x1 = 2, y1 = - 1, z1 = 2, x2 = 1, y2 = 2, z2 = - 3, x3 = 3, y3 = k and z3 = 7
 
⇒ 
 
⇒ 2 × (14 + 3k) + 1 × (7 + 9) + 2 × (k - 6) = 0
 
⇒ 28 + 6k + 16 + 2k - 12 = 0
 
⇒ 32 + 8k = 0
 
⇒k = - 4
 
Hence, option D is the correct answer.

Collinearity of points Question 2:

If the points (1, 3, 1), (2, - 1, k) and (0, 7, 3) are collinear, then find the value of k.

  1. 0
  2. 1
  3. - 1
  4. None of these

Answer (Detailed Solution Below)

Option 3 : - 1

Collinearity of points Question 2 Detailed Solution

CONCEPT:

If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then 

CALCULATION:
 
Given: The points (1, 3, 1), (2, - 1, k) and (0, 7, 3) are collinear
As we know that, if the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then 
Here, x1 = 1, y1 = 3, z1 = k, x2 = 2, y2 = - 1, z2 = k, x3 = 0, y3 = 7 and z3 = 3
 
⇒ 
 
⇒ 1 × (- 3 - 7k) - 3 × (6 - 0) + 1 × (14 - 0) = 0
 
⇒ - 3 - 7k - 18 + 14 = 0
 
⇒ k = - 1
 
Hence, option C is the correct answer.

Collinearity of points Question 3:

The points (-5, 1), (1, k) and (4, -2) are collinear if the value of k is

  1. -1
  2. 2
  3. 3
  4. 1

Answer (Detailed Solution Below)

Option 1 : -1

Collinearity of points Question 3 Detailed Solution

Given:

Points: (-5, 1), (1, k), and (4, -2)

Formula used:

For three points to be collinear, the area of the triangle formed by them must be zero.

Area of a triangle using coordinates:

Area = (1/2) × [x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)]

Calculation:

Since the points are collinear:

(1/2) × [-5(k + 2) + 1(-2 - 1) + 4(1 - k)] = 0

-5(k + 2) + 1(-3) + 4(1 - k) = 0

-5k - 10 - 3 + 4 - 4k = 0

-9k - 9 = 0

-9k = 9

k = -1

∴ The value of k is -1.

Collinearity of points Question 4:

If points and are colinear, then the value of is

Answer (Detailed Solution Below)

Option 4 :

Collinearity of points Question 4 Detailed Solution

Again,

Since, P, Q and R are co-linear points, hence

On Solving, we get:-

Hence, answer is option-(D).

Hot Links: teen patti boss teen patti - 3patti cards game downloadable content teen patti master apk best