Shortest Distance MCQ Quiz in தமிழ் - Objective Question with Answer for Shortest Distance - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 29, 2025

பெறு Shortest Distance பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Shortest Distance MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Shortest Distance MCQ Objective Questions

Top Shortest Distance MCQ Objective Questions

Shortest Distance Question 1:

Find the shortest distance between the lines  ?

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Shortest Distance Question 1 Detailed Solution

Concept:

The shortest distance between the skew line  is given by:

Calculation:

Given: Equation of lines is 

By comparing the given equations with , we get

⇒ x1 = 3, y1 = 4, z1 = - 2, a1 = -1, b1 = 2 and c1 = 1

Similarly, x2 = 1, y2 = - 7, z2 = -2, a2 = 1, b2 = 3 and c2 = 2

So, 

As we know that shortest distance between two skew lines is given by:

⇒ 

Hence, option C is the correct answer.

Shortest Distance Question 2:

Let λ be an integer. If the shortest distance between the lines x – λ = 2y – 1 = -2z and x = y + 2λ = z – λ is √7/2√2, then the value of |λ| is _________

Answer (Detailed Solution Below) 1

Shortest Distance Question 2 Detailed Solution

Calculation:

Distance between skew lines  and  is given by:

d = 

Calculation:

Given, (x – λ)/1 = (y – 1/2)/(1/2) = z/(-1/2)

(x – λ)/2 = (y-1/2)/1 = z/(-1) …(1) Point on line = (λ, 1/2, 0)

x/1 = (y + 2λ)/1 = (z – λ)/1 …(2) Point on line = (0, -2λ, λ)

∴ Distance between skew lines = 

= |-5λ – 3/2|/

= √7/(2√2) (Given)

⇒ |10λ + 3| = 7

⇒ 10λ + 3 = ± 7

⇒ λ = - 1 [∵ λ is an integer]

⇒ |λ| = 1

∴ The value of |λ| is 1. 

Shortest Distance Question 3:

The shortest distance between the lines  is

  1. 6√3
  2. 4√3
  3. 5√3
  4. 8√3

Answer (Detailed Solution Below)

Option 2 : 4√3

Shortest Distance Question 3 Detailed Solution

Concept:

The shortest distance between the lines  and  is given by d = 

Calculation:

Given,  and 

∴ a1  and b1

a2 =  and b2

⇒ a2 – a1

∴ 

⇒ 

∴  = 16[-4 + 16] = (16)(12)

⇒ d =  = 4√3

∴ The shortest distance is 4√3.

The correct answer is Option 2.

Shortest Distance Question 4:

The shortest distance between lines L1 and L2, where  and L2 is the line passing through the points A(-4, 4, 3). B(-1, 6, 3) and perpendicular to the line  is

Answer (Detailed Solution Below)

Option 3 :

Shortest Distance Question 4 Detailed Solution

Calculation

⇒ 

⇒ 

⇒ 

⇒ 

Hence, Option (3) is correct

Shortest Distance Question 5:

If d1 is the shortest distance between the lines  x + 1 = 2y = -12z, x = y + 2 = 6z – 6 and d2 is the shortest distance between the lines , then the value of is :

Answer (Detailed Solution Below) 16

Shortest Distance Question 5 Detailed Solution

Calculation

Given

d1 = shortest distance between L1 & L2 

⇒ d1

⇒ d1 = 2

d2 = shortest distance between L3 & L4

⇒  

Hence

 = 16

Shortest Distance Question 6:

Find the shortest distance between the lines 

  1. 26
  2. 23
  3. 25
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 26

Shortest Distance Question 6 Detailed Solution

Concept:

The shortest distance between the skew line and  is given by:

Calculation:

Given: Equation of lines is  and 

By comparing the given equations with  and , we get

⇒ x1 = 12, y1 = 1, z1 = 5, a1 = -9, b1 = 4 and c1 = 2

Similarly, x2 = 23, y2 = 19, z2 = 25, a2 = -6, b2 = -4 and c2 = 3

So, 

As we know that shortest distance between two skew lines is given by:

⇒ SD = 26 units

Hence, option A is the correct answer.

Shortest Distance Question 7:

Find the shortest distance between the lines 

  1. None of these

Answer (Detailed Solution Below)

Option 1 :

Shortest Distance Question 7 Detailed Solution

Concept:

The shortest distance between the skew line  is given by:

Calculation:

Given: The equation of lines is 

By comparing the given equations, we get

⇒ x1 = 3, y1 = 5, z1 = 7, a1 = 1, b1 = - 2 and c1 = 1

Similarly, x2 = - 1, y2 = -1, z2 = -1, a2 = 7, b2 = - 6 and c2 = 1

So, 

Similarly, 

= 2√29

As we know that shortest distance between two skew lines is given by:

⇒ SD = 

Shortest Distance Question 8:

If the line, lies on the plane , then the shortest distance between this line and the line is

Answer (Detailed Solution Below)

Option 1 :

Shortest Distance Question 8 Detailed Solution

Calculation

Let P be any point on the line,

P lies on the plane

⇒ 

⇒ 

⇒ 

⇒ 

⇒ 

Line is

Another line is (line ) Shortest distance be d.

⇒  where are DRS of lines

⇒ 

Hence option 1 is correct

Shortest Distance Question 9:

If the shortest distance between the lines  and  is 1, then the sum of all possible values of λ is :

  1. 0

Answer (Detailed Solution Below)

Option 2 :

Shortest Distance Question 9 Detailed Solution

Calculation

Given: Shortest distance(S.D) = 1

Passing points of lines L1 & L2 are

(λ, 2, 1) & (√3, 1, 2)

⇒ 

 λ = 0, λ = 2√3

∴ The sum of all possible values of λ is 

Shortest Distance Question 10:

If the shortest distance between the lines  and  is , then a value of λ is :

  1. 1
  2. -1

Answer (Detailed Solution Below)

Option 3 : 1

Shortest Distance Question 10 Detailed Solution

Explanation -

Shortest dist. = 

144 + 16λ2 + (3λ – 6)2 = 169

16λ2 + (3λ – 6)2 = 25  ⇒ λ = 1 

Hence Option (3) is correct.

Hot Links: teen patti dhani teen patti game online lucky teen patti teen patti master downloadable content teen patti refer earn