For ๐‘˜ ∈ โ„•, let ๐ธ๐‘˜ be a measurable subset of [0,1] with Lebesgue measure \(\rm \frac{1}{k^2}\) . Define 

\(\rm E=\cap_{n=1}^{\infty}\cup_{k=n}^{\infty}\) and \(\rm F=\cup_{n=1}^{\infty}\cap_{k=n}^{\infty}E_k\)

Consider the following statements:

๐‘ƒ: Lebesgue measure of ๐ธ is equal to zero.

๐‘„: Lebesgue measure of ๐น is equal to zero.

Then 

  1. both ๐‘ƒ and ๐‘„ are TRUE 
  2. both ๐‘ƒ and ๐‘„ are FALSE 
  3. ๐‘ƒ is TRUE but ๐‘„ is FALSE
  4. ๐‘„ is TRUE but ๐‘ƒ is FALSE

Answer (Detailed Solution Below)

Option 1 : both ๐‘ƒ and ๐‘„ are TRUE 

Detailed Solution

Download Solution PDF

Concept:

(i) \(\cap_{n=1}^{โˆž}\cup_{k=n}^{โˆž}\) = \(\lim\sup E_k\) and \(\cup_{n=1}^{โˆž}\cap_{k=n}^{โˆž}E_k\)\(\lim\inf E_k\)

(ii) If {Ei} is sequence of measurable sets, \(m\left(\cup_{i=1}^{โˆž}E_i\right)\) < ∞ and \(\lim E_i\) exist then m(\(\lim E_i\)) = lim(m(Ei))

Explanation:

For ๐‘˜ ∈ โ„•,t ๐ธ๐‘˜ is a measurable subset of [0,1] with Lebesgue measure \(\rm \frac{1}{k^2}\) .

Now,  m(\(\lim_{k\to\infty} E_k\)) = \(\lim_{k\to\infty}\)(m(Ek)) = \(\lim_{k\to\infty}\)\(\rm \frac{1}{k^2}\) = 0

Hence limit superior and limit inferior are both equal to 0 

Therefore, Lebesgue measure of \(\rm E=\cap_{n=1}^{\infty}\cup_{k=n}^{\infty}\) = \(\lim\sup E_k\) is 0

and Lebesgue measure of \(\rm F=\cup_{n=1}^{\infty}\cap_{k=n}^{\infty}E_k\)\(\lim\inf E_k\) is 0

Hence both ๐‘ƒ and ๐‘„ are TRUE 

Option (1) is correct

More Analysis Questions

Get Free Access Now
Hot Links๏ผš teen patti neta teen patti lotus teen patti master real cash teen patti master apk download teen patti real cash 2024