(sin x + icos x)जहाँ \(i=\sqrt{-1}\) का वास्तविक भाग क्या है?

This question was previously asked in
NDA (Held On: 19 Apr 2015) Maths Previous Year paper
View all NDA Papers >
  1. –cos 3x
  2. –sin 3x
  3. sin 3x
  4. cos 3x

Answer (Detailed Solution Below)

Option 2 : –sin 3x
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

धारणा:

सम्मिश्र संख्याओं पर यूलर का सूत्र:

  • eix = cos x + i sin x
  • e-ix = cos x - i sin x


गणना:

(sin x + icos x)3

I को उभयनिष्ठ लें, हमें मिलता है

(sin x + icos x)3

\({{\rm{i}}^3}{\left( {\frac{{\sin {\rm{x}}}}{{\rm{i}}} + {\rm{\;}}\cos {\rm{x}}} \right)^3}\)

= -i × (-i sin x + cos x)3                   

(∵ i3 = -i और 1/i = -i)

= -i × (cos x - i sin x) 3

\(= {\rm{}} - {\rm{i\;}} \times {\rm{}}{\left( {{{\rm{e}}^{ - {\rm{ix}}}}} \right)^3} \)       

\(= {\rm{}} - {\rm{i\;}} \times {\rm{\;}}{{\rm{e}}^{ - {\rm{i}}3{\rm{x}}}}{\rm{\;}}\)

(∵e-ix = cos x - i sin x)

= -i (cos 3x – i sin 3x)

= (-i cos 3x + i2 sin 3x)

= -sin3x – i cos 3x

∴ वास्तविक भाग = -sin 3x

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Complex Numbers Questions

Get Free Access Now
Hot Links: teen patti jodi teen patti apk download teen patti go teen patti game paisa wala teen patti sweet