If the matrix A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) = B + C, where B is symmetric and C is a skew-symmetric matrix, find the matrix B

This question was previously asked in
AAI ATC Junior Executive 27 July 2022 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&3&4 \\ { - 3}&0&{ - 7} \\ { - 4}&7&0 \end{array}} \right]\)
  2. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&2 \\ 5&{ - 6}&1 \\ 2&1&8 \end{array}} \right]\)
  3. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&1&2 \\ 1&{ - 2}&1 \\ 1&2&4 \end{array}} \right]\)
  4. \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&{ - 3}&{ - 4} \\ 3&0&7 \\ 4&{ - 7}&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&2 \\ 5&{ - 6}&1 \\ 2&1&8 \end{array}} \right]\)
Free
AAI ATC JE Physics Mock Test
7.1 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

Explanation:

Given, the matrix A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) 

A = B + C

Here matrix A is expressed as the sum of symmetric and skew-symmetric matrices.

Then, \(B=\frac{1}{2}(A+A^{T}) \ and\ C=\frac{1}{2}(A-A^{T})\)

Where B is symmetric and C is a skew-symmetric matrix.

To Find: The matrix B

A = \(\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right]\) 

\(A^{T}=\begin{bmatrix} 0 & 4& 3 \\ 1 & -3 & -3 \\ -1& 4& 4 \\ \end{bmatrix}\)

\(A+ A^{T}=\left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ 4&{ - 3}&4 \\ 3&{ - 3}&4 \end{array}} \right] +\begin{bmatrix} 0 & 4& 3 \\ 1 & -3 & -3 \\ -1& 4& 4 \\ \end{bmatrix}\)

\(A+ A^{T}=\begin{bmatrix} 0 &5 & 2 \\ 5& -6 & 1 \\ 2& 1 & 8 \\ \end{bmatrix}\)

\(B=\frac{1}{2}(A+ A^{T})=\frac{1}{2}\begin{bmatrix} 0 &5 & 2 \\ 5& -6 & 1 \\ 2& 1 & 8 \\ \end{bmatrix}\)

Latest AAI JE ATC Updates

Last updated on Jun 19, 2025

-> The AAI ATC Exam 2025 will be conducted on July 14, 2025 for Junior Executive.. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on April 4, 2025, along with the details of application dates, eligibility, and selection process.

-> A total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in the Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer-Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

More Matrices Questions

Get Free Access Now
Hot Links: teen patti fun teen patti real cash 2024 teen patti royal - 3 patti teen patti star apk teen patti all