The number of vectors of unit length perpendicular to the vectors \(\rm\vec{a}\) = 2î + ĵ + 2k̂ and \(\rm\vec{b}\) = ĵ + k̂ is

  1. one
  2. two
  3. three
  4. infinite

Answer (Detailed Solution Below)

Option 2 : two

Detailed Solution

Download Solution PDF

Calculation:

Given two vector are  \(\rm\vec{a}\) = 2î + ĵ + 2k̂ and \(\rm\vec{b}\) = ĵ + k̂

Unit vectors perpendicular to \(\rm\vec{a}\) and \(\rm\vec{b}\) are  \(\pm\frac{\rm\vec{a}\times\rm\vec{b}}{|\vec a\times\vec b|}\)

\(\vec a\times\vec b= \begin{vmatrix}\hat i&\hat j&\hat k\\2&1&2\\0&1&1\end{vmatrix}\)

\(\vec a\times\vec b=\hat i(1-2)-\hat j(2-0)+\hat k(2-0) \)

\(\vec a\times \vec b= -\hat i-2\hat j+2\hat k\)

\(|\vec a\times \vec b| =√{(-1)^2+(-2)^2+(2)^2}=√{1+4+4}\)

= √9  = 3

The unit vectors perpendicular to  \(\rm\vec{a}\) and \(\rm\vec{b}\) are \(\pm(\frac{-\hat i-2\hat j+2\hat k}{3})\)

Hence there are two vectors perpendicular to the vectors \(\vec a\) and \(\vec b\).

The correct answer is option 2.

More Scalar and Vector Product Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti master old version teen patti game teen patti tiger mpl teen patti