Question
Download Solution PDFThe position vectors of three points A, B and C respectively, where \(\vec{a} ,\vec{b} \) and \(\vec{c} \) respectively, where \(\vec{c} = (\cos^2 \theta)\vec{a}+(\sin^2 \theta)\vec{b}\). What is \((\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a})\) equal to?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFCalculation:
Given,
The position vectors of points A, B, and C are \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) respectively, and \( \vec{c} = \cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b} \).
The expression to evaluate is: \( (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) \).
First, substitute \( \vec{c} \) into the equation:
\( (\vec{a} \times \vec{b}) + (\vec{b} \times (\cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b})) + (\cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b}) \times \vec{a} \).
Using the distributive property of the cross product:
\( (\vec{a} \times \vec{b}) + \left[ (\vec{b} \times \cos^2 \theta \, \vec{a}) + (\vec{b} \times \sin^2 \theta \, \vec{b}) \right] + \left[ (\cos^2 \theta \, \vec{a} \times \vec{a}) + (\sin^2 \theta \, \vec{b} \times \vec{a}) \right] \).
Since \( \vec{b} \times \vec{b} = 0 \) and \( \vec{a} \times \vec{a} = 0 \), we are left with:
\( (\vec{a} \times \vec{b}) + \cos^2 \theta \, (\vec{b} \times \vec{a}) + \sin^2 \theta \, (- \vec{a} \times \vec{b}) \).
Substitute \( \vec{b} \times \vec{a} = - (\vec{a} \times \vec{b}) \) into the expression:
\( (\vec{a} \times \vec{b}) + \cos^2 \theta \, (- \vec{a} \times \vec{b}) + \sin^2 \theta \, (- \vec{a} \times \vec{b}) \).
Factor out \( \vec{a} \times \vec{b} \):
\( \vec{a} \times \vec{b} \left[ 1 - \cos^2 \theta - \sin^2 \theta \right] \).
Since \( \cos^2 \theta + \sin^2 \theta = 1 \), the expression becomes:
\( \vec{a} \times \vec{b} [1 - 1] = 0 \).
∴ The final result is \( \vec{0} \).
Hence, the correct answer is option 1.
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.