The position vectors of three points A, B and C respectively, where  \(\vec{a} ,\vec{b} \) and \(\vec{c} \)  respectively, where \(\vec{c} = (\cos^2 \theta)\vec{a}+(\sin^2 \theta)\vec{b}\). What is \((\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a})\) equal to?

This question was previously asked in
NDA-I (Mathematics) Official Paper (Held On: 13 Apr, 2025)
View all NDA Papers >
  1. \(\vec{0}\)
  2. \(\vec{2c}\)
  3. \(\vec{3c}\)
  4. Unit vector

Answer (Detailed Solution Below)

Option 1 : \(\vec{0}\)
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
6 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

Calculation:

Given,

The position vectors of points A, B, and C are \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) respectively, and \( \vec{c} = \cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b} \).

The expression to evaluate is: \( (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) \).

First, substitute \( \vec{c} \) into the equation:

\( (\vec{a} \times \vec{b}) + (\vec{b} \times (\cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b})) + (\cos^2 \theta \, \vec{a} + \sin^2 \theta \, \vec{b}) \times \vec{a} \).

Using the distributive property of the cross product:

\( (\vec{a} \times \vec{b}) + \left[ (\vec{b} \times \cos^2 \theta \, \vec{a}) + (\vec{b} \times \sin^2 \theta \, \vec{b}) \right] + \left[ (\cos^2 \theta \, \vec{a} \times \vec{a}) + (\sin^2 \theta \, \vec{b} \times \vec{a}) \right] \).

Since \( \vec{b} \times \vec{b} = 0 \) and \( \vec{a} \times \vec{a} = 0 \), we are left with:

\( (\vec{a} \times \vec{b}) + \cos^2 \theta \, (\vec{b} \times \vec{a}) + \sin^2 \theta \, (- \vec{a} \times \vec{b}) \).

Substitute \( \vec{b} \times \vec{a} = - (\vec{a} \times \vec{b}) \) into the expression:

\( (\vec{a} \times \vec{b}) + \cos^2 \theta \, (- \vec{a} \times \vec{b}) + \sin^2 \theta \, (- \vec{a} \times \vec{b}) \).

Factor out \( \vec{a} \times \vec{b} \):

\( \vec{a} \times \vec{b} \left[ 1 - \cos^2 \theta - \sin^2 \theta \right] \).

Since \( \cos^2 \theta + \sin^2 \theta = 1 \), the expression becomes:

\( \vec{a} \times \vec{b} [1 - 1] = 0 \).

∴ The final result is \( \vec{0} \).

Hence, the correct answer is option 1. 

Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Scalar and Vector Product Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti master download teen patti master apk download teen patti sequence teen patti king