The set of points where \(\rm f(x)=\frac{x}{1+|x|}\) is differentiable, is:

This question was previously asked in
NIMCET 2018 Official Paper
View all NIMCET Papers >
  1. (-∞, -1) ∪ (1, ∞)
  2. (-∞, ∞)
  3. (0, ∞)
  4. (-∞, 0) ∪ (0, ∞)

Answer (Detailed Solution Below)

Option 2 : (-∞, ∞)
Free
NIMCET 2020 Official Paper
10.8 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

  • Differentiability of a Function: A function f(x) is differentiable at x = a in its domain if its derivative is continuous at a.

    This means that f'(a) must exist, or equivalently: \(\rm \lim_{x\to a^+}f'(x)=\lim_{x\to a^-}f'(x)=\lim_{x\to a}f'(x)=f'(a)\).

  • The Modulus Function '| |' is defined as: \(\rm |x|=\left\{\begin{matrix}\rm \ \ \ x, &\rm x \geq 0\\ \rm -x, &\rm x<0\\\end{matrix}\right.\).

 

Calculation:

By using the definition of modulus function, the given function can be written as: \(\rm f(x)=\left\{\begin{matrix}\rm \frac{x}{1+x}, &\rm x > 0\\ \ \ \ \ 0,&\rm x=0\\ \rm \frac{x}{1-x}, &\rm x<0\\\end{matrix}\right.\).

Since the expressions for f(x) change for x > 0 and x < 0, let us compare the limits of the derivatives as x → 0.

For x > 0, \(\rm f(x)=\frac{x}{1+x}\).

\(\rm f'(x)=x\left[\frac{d}{dx}\left(\frac{1}{1+x}\right)\right]+\left(\frac{d}{dx}x\right)\frac{1}{1+x}\)

⇒ \(\rm f'(x)=x\frac{(-1)}{(1+x)^2}+\frac{1}{1+x}\)

⇒ \(\rm f'(x)=\frac{1}{(1+x)^2}\)

⇒ \(\rm \lim_{x\to0^+} f'(x)=1\).

Similarly, for x < 0, \(\rm f(x)=\frac{x}{1-x}\).

⇒ \(\rm \lim_{x\to0^-} f'(x)=\lim_{x\to0^-} \frac{1}{(1-x)^2}=1\).

Since \(\rm \lim_{x\to 0^+}f'(x)=\lim_{x\to 0^-}f'(x)=1\), the function f(x) is differentiable at x = 0, and f'(0) = 1.

Also, \(\rm \lim_{x\to \infty^+}f'(x)=\lim_{x\to \infty^-}f'(x)=0\).

∴ The function is differentiable in (-∞, ∞), i.e. it is differentiable everywhere.

Latest NIMCET Updates

Last updated on Jun 12, 2025

->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.

-> NIMCET exam was conducted on June 8, 2025.

-> NIMCET 2025 admit card was out on June 3, 2025.

-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

Get Free Access Now
Hot Links: teen patti royal teen patti pro teen patti real money app teen patti rummy teen patti master