Real and Imaginary parts MCQ Quiz in বাংলা - Objective Question with Answer for Real and Imaginary parts - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 19, 2025
Latest Real and Imaginary parts MCQ Objective Questions
Top Real and Imaginary parts MCQ Objective Questions
Real and Imaginary parts Question 1:
If x + iy = \(\rm 2+3i\over 1-i\), find x and y
Answer (Detailed Solution Below)
Real and Imaginary parts Question 1 Detailed Solution
Calculation:
x + iy = \(\rm 2+3i \over 1-i\)
x + iy = \(\rm {2+3i \over 1-i}\times{1+i\over1+i}\)
x + iy = \(\rm 2+5i-3\over 1^2-(i)^2\)
x + iy = \(\rm -{1\over2}+{5\over2}i\)
∴ x = \(-{1\over2}\) and y = \(5\over2\)
Real and Imaginary parts Question 2:
If \(\frac{(1 + i)x - 2i}{3 + i}+\frac{(2-3i)y+i}{3 - i}= i\) then the real values of x and y are given by
Answer (Detailed Solution Below)
Real and Imaginary parts Question 2 Detailed Solution
Concept:
1. A complex number (Z): Complex number is the combination of a real number and an imaginary number. It is given by
Z = x + iy, where 'x' and 'y' are the real and imaginary parts of Z and
i = √-1 or i2 = -1
Re(Z) = x and Img(Z) = y
2. Two complex numbers will be equal if their real and imaginary part are equal.
Calculation:
Given that,
\(\frac{(1 + i)x - 2i}{3 + i}+\frac{(2-3i)y+i}{3 - i}= i\)
\(\Rightarrow\ \frac{[(1 + i)x - 2i](3 \ -\ i)\ +\ [(2-3i)y+i](3+i)}{9\ -\ i^2}\ =\ i\)
⇒(1 + i)(3x - ix) - 2i(3 - i) + (2 - 3i)(3y + iy) + i(3 + i) = 10i
⇒ 3x + 3xi - ix - i2x - 6i + 2i2 + 6y - 9iy + 2iy - 3yi2 + 3i + i2 = 10i
We know that, i2 = -1
⇒ 3x + 2xi + x - 6i - 2 + 6y - 7yi + 3y + 3i -1 = 10i
⇒ 4x + 9y − 3 + 2xi − 7yi − 13i = 0
⇒ 4x + 9y − 3 + (2x − 7y − 13)i = 0
On comparing the real part and imaginary part, we get
4x + 9y − 3 = 0 …… (1)
2x − 7y − 13 = 0 …… (2)
On solving both equations, we get
x = 3 and y = −1
Hence, the value of x, y is 3, −1.
Real and Imaginary parts Question 3:
If z = -z̅, then which one of the following is correct?
Answer (Detailed Solution Below)
Real and Imaginary parts Question 3 Detailed Solution
Concept:
Let z = x + iy be any complex number.
Conjugate of z: \(\rm \bar{z} = x - iy\)
Calculations:
Let z = x + iy be any complex number.
⇒\(\rm \bar{z} = x - iy\)
Given, z = -z̅
⇒ (x + iy) = - (x - iy)
⇒ x + iy = - x + iy
⇒ 2x = 0
i.e The real part of z is zero.
Hence, If z = -z̅, then the real part of z is zero.
Real and Imaginary parts Question 4:
If \(z \neq 1\) and \(\displaystyle \frac{z^{2}}{z-1}\) is real, then the point represented by the complex number \(\mathrm{z}\) lies:
Answer (Detailed Solution Below)
Real and Imaginary parts Question 4 Detailed Solution
Calculation
\( z \neq 1 \) and \( \dfrac{z^{2}}{z-1} \) is real so imaginary Part is 0.
Let's say \( z = x+iy \)
⇒ \( \dfrac{z^{2}}{z-1} \) \( = \dfrac{(x+iy)^{2}}{x+iy-1} = \dfrac{x^{2}-y^{2}+2ixy}{(x-1)+iy} \)
On rationalizing
\( \Rightarrow \dfrac{x^{2}-y^{2}+2ixy}{(x-1)+iy} \times \dfrac{(x-1)-iy}{(x-1)-iy} \)
\( \Rightarrow \dfrac{(x^{2}-y^{2}+2ixy)((x-1)-iy)}{(x-1)^{2}+y^{2}} \)
(Imaginary Part \( = 0 \))\( \Rightarrow 2xy(x-1)-x^{2}y+y^{3} = 0 \)
\( \Rightarrow 2x^{2}y-2xy-x^{2}y+y^{3} = 0 \)
\( \Rightarrow x^{2}y+y^{3}-2xy = 0 \)
\( \Rightarrow y(x^{2}+y^{2}-2x) = 0 \)
\( \Rightarrow y = 0 \) or \( x^{2}+y^{2}-2x = 0 \)
\( \Rightarrow \text{Real axis Line}: y=0 \quad \text{or} \quad \text{Circle}: x^2+y^2-2x=0 \Rightarrow (x-1)^2+(y-0)^2=1^2 \)
Hence option 1 is correct
Real and Imaginary parts Question 5:
4x + i(2x - y) = 8 - 4i , then x, y is
Answer (Detailed Solution Below)
Real and Imaginary parts Question 5 Detailed Solution
Concept:
Equality of complex numbers.
Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2
Or Re (z1) = Re (z2) and Im (z1) = Im (z2).
Calculations:
Given: 4x + i(2x - y) = 8 - 4i
Equating real part of the complex number
⇒ 4x = 8
⇒ x = 2
Equating imaginary part of the complex number
⇒ 2x - y = -4
\(⇒ 2\times2-y=-4\)
\(⇒ y=8\)
\(\therefore x=2 , y=8\)
Hence , option 2 is correct
Real and Imaginary parts Question 6:
If a complex number is purely imaginary so find the value of x. The complex number is (x2 - 5x + 6) + i √17.
Answer (Detailed Solution Below)
Real and Imaginary parts Question 6 Detailed Solution
Concept:
A complex number z = x + iy
Real part of z = x, Imaginary part of z = y
If the Complex number is Purely imaginary so we can say that the Real part of a complex number is Zero.
If the Complex number is Purely real so we can say that the Imaginary part of a complex number is Zero.
Calculation:
Given: (x2 - 5x + 6) + i √17
For purely imaginary complex number real part is 0
So, x2 - 5x + 6 = 0
x2 - 3x - 2x + 6 = 0
x(x - 3) - 2(x - 3) = 0
(x - 3)(x - 2) = 0
Here, x = 2, 3
Real and Imaginary parts Question 7:
Find the real and imaginary part of the complex number \(\rm z=\frac {1-i}{1+i}\)
Answer (Detailed Solution Below)
Real and Imaginary parts Question 7 Detailed Solution
Concept:
Equality of complex numbers.
Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal if and only if x1 = x2 and y1 = y2
Or Re (z1) = Re (z2) and Im (z1) = Im (z2).
Calculations:
Given complex number
\(\Rightarrow z=\frac{1-i}{1+i}\)
Multiplying the numerator and denominator with 1 - i
\(\Rightarrow z=\frac{1-i}{1+i}\times \frac{1-i}{1-i}\)
\(\Rightarrow z=\frac{(1-i)(1-i)}{1-(i.i)}\)
\(=\frac{1+i^{2}-2i}{1+1}\)
\(=\frac{1-1-2i}{2}\)
= -i
So, z = 0 - i
∴ Re (z) = 0 and Im (z) = -1
Hence,option 4 is correct
Real and Imaginary parts Question 8:
What is the value of \(\sqrt{12+5 i}+\sqrt{12-5 i}\) where \(i=\sqrt{-1}\) ?
Answer (Detailed Solution Below)
Real and Imaginary parts Question 8 Detailed Solution
Formula Used:
(a + b) (a - b) = a2 - b2
i2 = -1
Calculation:
Let x =\(\sqrt{12+5 i}+\sqrt{12-5 i}\), where \(i=\sqrt{-1}\)
Squaring both sides,
x2 = \({12+5 i}+{12-5 i} +2\sqrt{12+5 i}\sqrt{12-5 i}\)
x2 = \({24} +2\sqrt{144+25}\)
x2 = \({24} +2\sqrt{169}\)
x2 = \(24 +26\)
x2 = \(50\)
x = \(5\sqrt 2\)
Real and Imaginary parts Question 9:
If (a + ib)(c + id)(e + if)(g + ih) = A + iB, then (a2 + b2) (c2 + d2)(e2 + f2)(g2 + h2) is equal to
Answer (Detailed Solution Below)
Real and Imaginary parts Question 9 Detailed Solution
Concept:
|z1.z2| = |z1|.|z2|
If z = x + iy, then |z| = √(x2 + y2)
Calculation:
Given,
Now taking modulus both sides we get,
|(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|
⇒ |(a + ib)|.|(c + id)|.|(e + if)|.|(g + ih)| = |A + iB|
⇒ √(a2 + b2) .√(c2 + d2) .√(e2 + f2) .√(g2 + h2) = √(A2 + B2)
Squaring both sides,
(a2 + b2) (c2 + d2)(e2 + f2)(g2 + h2) = A2 + B2
∴ The correct answer is option (2).
Real and Imaginary parts Question 10:
If \(z = \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^ 5\), then
Answer (Detailed Solution Below)
Real and Imaginary parts Question 10 Detailed Solution
Concept:
cos θ + i sin θ = eiθ
cos(π/6) = √3/2, sin(π/6) = 1/2
cos(5π/6) = -√3/2, sin(5π/6) = 1/2
Calculation:
Given, \(z = \left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\)
⇒ \(z = \left(cos {π \over 6}+i sin {π \over 6}\right)^5 + \left(\cos {π \over 6}-i sin {π \over 6}\right)^5\)
⇒ \(z = \left(e^{{iπ \over 6}} \right)^5 + \left(e^{-{iπ \over 6}}\right)^5\)
⇒ \(z = \left(e^{{5π i\over 6}} \right) + \left(e^{-{5πi \over 6}}\right)\)
⇒ \(z = \left(cos {5π \over 6}+i sin {5π \over 6}\right) + \left(\cos {5π \over 6}-i sin {5π \over 6}\right)\)
⇒ \(z = 2 \cos(\frac{5\pi}{6}) + 0i\)
⇒ \(z = 2 \cos(\pi - \frac{\pi}{6}) + 0i\)
⇒ \(z = - 2 \cos(\frac{\pi}{6}) + 0i\)
⇒ \(z = - 2\times \frac{\sqrt3}{2} + 0i\)
⇒ \(z = -\sqrt{3} +0i\)
⇒ Im(z) = 0 and Re(z) < 0
∴ The correct answer is option (2).