Cube Roots of Unity MCQ Quiz - Objective Question with Answer for Cube Roots of Unity - Download Free PDF
Last updated on Apr 9, 2025
Latest Cube Roots of Unity MCQ Objective Questions
Cube Roots of Unity Question 1:
What is the value of \(\left(\frac{i + \sqrt{3}}{-i + \sqrt{3}}\right)^{200}+ \left(\frac{i - \sqrt{3}}{i + \sqrt{3}}\right)^{200}+1\)?
Answer (Detailed Solution Below)
Cube Roots of Unity Question 1 Detailed Solution
Concept :
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - \;1\; + \;i√ 3 }}{2}\) and ω2 = \(\frac{{ - \;1\; - \;i√ 3 }}{2}\)
Property of cube roots of unity:
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ω
- ω3n = 1
Calculations :
Given that
\(\left(\frac{i + \sqrt{3}}{-i + \sqrt{3}}\right)^{200}+ \left(\frac{i - \sqrt{3}}{-i + \sqrt{3}}\right)^{200}\)
Consider the first part of the given equation
⇒ \((\frac{i +√{3}}{-i+√{3}})\times(\frac{i +√{3}}{i+√{3}})\)
⇒ \(\frac{(i+√{3})^2}{(√{3}-i)(√{3}+i)}\)
We know that (a - b)(a + b) = a2 - b2 and i2 = √-1
⇒ \(\frac{2+2√{3}i}{4}\)
⇒ \(\frac{1+√{3}}{2} = -(\frac{-1-√{3}}{2})=-ω^2\) ----- (1)
Consider the second part of the given equation
⇒ \((\frac{i -√{3}}{i+√{3}})\times(\frac{i -√{3}}{i-√{3}})\)
⇒ \(\frac{(i-√{3})^2}{(i^2-(√{3})^2)} = \frac{-1+i√{3}}{2}=ω\) ----- (2)
Using equations (1) and (2) in the given equation, we get
⇒ \((-ω^2)^{200} + ω^{200} +1\)
⇒ \(ω^{400}+ω^{200}+1\)
⇒ \(ω^{3\times133+1} + ω^{3\times66 +2}+1\)
We know that \(\omega^3 =1\)
⇒ \(\omega^2+\omega +1 = 0\)
∴ The value of \(\left(\frac{i + √{3}}{-1 + √{3}}\right)^{200}+ \left(\frac{i - √{3}}{-1 + √{3}}\right)^{200}+1\) is 0.
Cube Roots of Unity Question 2:
If 1, ω, ω2 are cube roots of unity then the value of Δ = \(\begin{bmatrix} 1 &\omega & \omega^{2n} \\ \omega^2 & \omega^{2n} & 1 \\ \omega^{2n}& 1 & \omega^{n} \end{bmatrix} \)
Answer (Detailed Solution Below)
Cube Roots of Unity Question 2 Detailed Solution
Concept:
The cube roots of unity are 1, ω and ω2
where,
\(ω = \frac{{ - \;1 + i\sqrt 3 }}{2}\;and\;{ω ^2} = \frac{{ - \;1\; - \;i\;\sqrt 3 }}{2}\)
\(1 + {ω ^n} + {ω ^{2n}} = \;\left\{ {\begin{array}{*{20}{c}} {0,\;if\;n\;is\;not\;multiple\;of\;3}\\ {3,\;if\;n\;is\;multiple\;of\;3} \end{array}} \right.\)
ω3 = 1
1 + ω + ω2 = 0
ω3n = 1
Calculation:
Given:
Δ = \(\begin{bmatrix} 1 &ω & ω^{2n} \\ ω^2 & ω^{2n} & 1 \\ ω^{2n}& 1 & ω^{n} \end{bmatrix} \)
on solving determinant we get,
Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)
Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )
Since ω3 = 1, ω3n = 1, ω6n = 1
Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1
Δ = -1 - ωn +ω2n (ω + ω2)
Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1
Δ = -1 - ωn - ω2n
If n is not a multiple of 3 then:
Δ = -1 - ωn - ω2n = 0
Cube Roots of Unity Question 3:
If a complex number ω satisfies the equation ω3 =1, then the value of \(1\;+\;\omega\;+\frac{1}{\omega}\) is
Answer (Detailed Solution Below)
Cube Roots of Unity Question 3 Detailed Solution
Concept:
ω3 = 1 where ω is the cube root of unity.
ω3 - 13 = 0
(ω - 1)(1 + ω + ω2) = 0
∴ ω = 1 and 1 + ω + ω2 = 0
Calculation:
Given:
\(1\;+\;ω\;+\frac{1}{ω}\)
We know that;
1 + ω + ω2 = 0
\(1\;+\;ω\;+\frac{ω^2}{1}=0\)
\(1\;+\;ω\;+\frac{ω^2}{ω^3}=0\) [∵ ω3 = 1]
\(\therefore 1\;+\;ω\;+\frac{1}{ω}=0\)
Cube Roots of Unity Question 4:
If ω is a cube root of unity then the value of \(\left( {1 - {{\rm{\omega }}^8}} \right)\left( {1 - {{\rm{\omega }}^4}} \right)\left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right)\) is ___
Answer (Detailed Solution Below)
Cube Roots of Unity Question 4 Detailed Solution
We know that \(1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0{\rm{\;and\;}}{{\rm{\omega }}^3} = 1\) then
\(\begin{array}{l} \left( {1 - {{\rm{\omega }}^8}} \right)\left( {1 - {{\rm{\omega }}^4}} \right)\left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right) = \left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right)\left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right)\\ = \left( {1 - {{\rm{\omega }}^2} - {\rm{\omega }} + {{\rm{\omega }}^3}{\rm{\;}}} \right)\left( {1 - {{\rm{\omega }}^2} - {\rm{\omega }} + {{\rm{\omega }}^3}} \right)\\ = \left( {2 - \left( {{\rm{\omega }} + {{\rm{\omega }}^2}} \right)} \right)\left( {2 - \left( {{\rm{\omega }} + {{\rm{\omega }}^2}} \right)} \right)\\ = \left( {2 - \left( { - 1} \right)} \right)\left( {2 - \left( { - 1} \right)} \right) = 9 \end{array}\)
Top Cube Roots of Unity MCQ Objective Questions
If 1, ω, ω2 are cube roots of unity then the value of Δ = \(\begin{bmatrix} 1 &\omega & \omega^{2n} \\ \omega^2 & \omega^{2n} & 1 \\ \omega^{2n}& 1 & \omega^{n} \end{bmatrix} \)
Answer (Detailed Solution Below)
Cube Roots of Unity Question 5 Detailed Solution
Download Solution PDFConcept:
The cube roots of unity are 1, ω and ω2
where,
\(ω = \frac{{ - \;1 + i\sqrt 3 }}{2}\;and\;{ω ^2} = \frac{{ - \;1\; - \;i\;\sqrt 3 }}{2}\)
\(1 + {ω ^n} + {ω ^{2n}} = \;\left\{ {\begin{array}{*{20}{c}} {0,\;if\;n\;is\;not\;multiple\;of\;3}\\ {3,\;if\;n\;is\;multiple\;of\;3} \end{array}} \right.\)
ω3 = 1
1 + ω + ω2 = 0
ω3n = 1
Calculation:
Given:
Δ = \(\begin{bmatrix} 1 &ω & ω^{2n} \\ ω^2 & ω^{2n} & 1 \\ ω^{2n}& 1 & ω^{n} \end{bmatrix} \)
on solving determinant we get,
Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)
Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )
Since ω3 = 1, ω3n = 1, ω6n = 1
Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1
Δ = -1 - ωn +ω2n (ω + ω2)
Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1
Δ = -1 - ωn - ω2n
If n is not a multiple of 3 then:
Δ = -1 - ωn - ω2n = 0
Cube Roots of Unity Question 6:
If ω is a cube root of unity then the value of \(\left( {1 - {{\rm{\omega }}^8}} \right)\left( {1 - {{\rm{\omega }}^4}} \right)\left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right)\) is ___
Answer (Detailed Solution Below)
Cube Roots of Unity Question 6 Detailed Solution
We know that \(1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0{\rm{\;and\;}}{{\rm{\omega }}^3} = 1\) then
\(\begin{array}{l} \left( {1 - {{\rm{\omega }}^8}} \right)\left( {1 - {{\rm{\omega }}^4}} \right)\left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right) = \left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right)\left( {1 - {{\rm{\omega }}^2}} \right)\left( {1 - {\rm{\omega }}} \right)\\ = \left( {1 - {{\rm{\omega }}^2} - {\rm{\omega }} + {{\rm{\omega }}^3}{\rm{\;}}} \right)\left( {1 - {{\rm{\omega }}^2} - {\rm{\omega }} + {{\rm{\omega }}^3}} \right)\\ = \left( {2 - \left( {{\rm{\omega }} + {{\rm{\omega }}^2}} \right)} \right)\left( {2 - \left( {{\rm{\omega }} + {{\rm{\omega }}^2}} \right)} \right)\\ = \left( {2 - \left( { - 1} \right)} \right)\left( {2 - \left( { - 1} \right)} \right) = 9 \end{array}\)
Cube Roots of Unity Question 7:
If 1, ω, ω2 are cube roots of unity then the value of Δ = \(\begin{bmatrix} 1 &\omega & \omega^{2n} \\ \omega^2 & \omega^{2n} & 1 \\ \omega^{2n}& 1 & \omega^{n} \end{bmatrix} \)
Answer (Detailed Solution Below)
Cube Roots of Unity Question 7 Detailed Solution
Concept:
The cube roots of unity are 1, ω and ω2
where,
\(ω = \frac{{ - \;1 + i\sqrt 3 }}{2}\;and\;{ω ^2} = \frac{{ - \;1\; - \;i\;\sqrt 3 }}{2}\)
\(1 + {ω ^n} + {ω ^{2n}} = \;\left\{ {\begin{array}{*{20}{c}} {0,\;if\;n\;is\;not\;multiple\;of\;3}\\ {3,\;if\;n\;is\;multiple\;of\;3} \end{array}} \right.\)
ω3 = 1
1 + ω + ω2 = 0
ω3n = 1
Calculation:
Given:
Δ = \(\begin{bmatrix} 1 &ω & ω^{2n} \\ ω^2 & ω^{2n} & 1 \\ ω^{2n}& 1 & ω^{n} \end{bmatrix} \)
on solving determinant we get,
Δ = 1 (ω2n ωn - 1) - ω (ω2 ωn - ω2n) + ω2n (ω2 - ω2n ω2n)
Δ = (ω3n - 1) - (ω3 ωn - ω2n ω) + (ω2 ω2n - ω6n )
Since ω3 = 1, ω3n = 1, ω6n = 1
Δ = 0 - ωn + ω2n ω + ω2 ω2n - 1
Δ = -1 - ωn +ω2n (ω + ω2)
Since 1 + ω + ω2 = 0 ⇒ ω + ω2 = - 1
Δ = -1 - ωn - ω2n
If n is not a multiple of 3 then:
Δ = -1 - ωn - ω2n = 0
Cube Roots of Unity Question 8:
If a complex number ω satisfies the equation ω3 =1, then the value of \(1\;+\;\omega\;+\frac{1}{\omega}\) is
Answer (Detailed Solution Below)
Cube Roots of Unity Question 8 Detailed Solution
Concept:
ω3 = 1 where ω is the cube root of unity.
ω3 - 13 = 0
(ω - 1)(1 + ω + ω2) = 0
∴ ω = 1 and 1 + ω + ω2 = 0
Calculation:
Given:
\(1\;+\;ω\;+\frac{1}{ω}\)
We know that;
1 + ω + ω2 = 0
\(1\;+\;ω\;+\frac{ω^2}{1}=0\)
\(1\;+\;ω\;+\frac{ω^2}{ω^3}=0\) [∵ ω3 = 1]
\(\therefore 1\;+\;ω\;+\frac{1}{ω}=0\)
Cube Roots of Unity Question 9:
What is the value of \(\left(\frac{i + \sqrt{3}}{-i + \sqrt{3}}\right)^{200}+ \left(\frac{i - \sqrt{3}}{i + \sqrt{3}}\right)^{200}+1\)?
Answer (Detailed Solution Below)
Cube Roots of Unity Question 9 Detailed Solution
Concept :
Cube Roots of unity are 1, ω and ω2
Here, ω = \(\frac{{ - \;1\; + \;i√ 3 }}{2}\) and ω2 = \(\frac{{ - \;1\; - \;i√ 3 }}{2}\)
Property of cube roots of unity:
- ω3 = 1
- 1 + ω + ω2 = 0
- ω = 1 / ω 2 and ω2 = 1 / ω
- ω3n = 1
Calculations :
Given that
\(\left(\frac{i + \sqrt{3}}{-i + \sqrt{3}}\right)^{200}+ \left(\frac{i - \sqrt{3}}{-i + \sqrt{3}}\right)^{200}\)
Consider the first part of the given equation
⇒ \((\frac{i +√{3}}{-i+√{3}})\times(\frac{i +√{3}}{i+√{3}})\)
⇒ \(\frac{(i+√{3})^2}{(√{3}-i)(√{3}+i)}\)
We know that (a - b)(a + b) = a2 - b2 and i2 = √-1
⇒ \(\frac{2+2√{3}i}{4}\)
⇒ \(\frac{1+√{3}}{2} = -(\frac{-1-√{3}}{2})=-ω^2\) ----- (1)
Consider the second part of the given equation
⇒ \((\frac{i -√{3}}{i+√{3}})\times(\frac{i -√{3}}{i-√{3}})\)
⇒ \(\frac{(i-√{3})^2}{(i^2-(√{3})^2)} = \frac{-1+i√{3}}{2}=ω\) ----- (2)
Using equations (1) and (2) in the given equation, we get
⇒ \((-ω^2)^{200} + ω^{200} +1\)
⇒ \(ω^{400}+ω^{200}+1\)
⇒ \(ω^{3\times133+1} + ω^{3\times66 +2}+1\)
We know that \(\omega^3 =1\)
⇒ \(\omega^2+\omega +1 = 0\)
∴ The value of \(\left(\frac{i + √{3}}{-1 + √{3}}\right)^{200}+ \left(\frac{i - √{3}}{-1 + √{3}}\right)^{200}+1\) is 0.
Cube Roots of Unity Question 10:
\(\frac{a \ + \ b \omega \ + \ c\omega^2}{c \ + \ a \omega \ + \ b\omega^2}\) + \(\frac{a \ + \ b \omega \ + \ c\omega^2}{b \ + \ c \omega \ + \ a\omega^2}\) is equal to
Answer (Detailed Solution Below)
Cube Roots of Unity Question 10 Detailed Solution
Concept:
1 + ω + ω2 = 0
ω3 = 1
Calculation:
We can write the given expression as
⇒ \(\frac{\omega( a \ + \ b \omega \ + \ c\omega^2)}{(c\omega \ + \ a \omega^2 \ + \ b)} + \frac{a \ + \ b \omega \ + \ c\omega^2}{b \ + \ c \omega \ + \ a\omega^2} \)
⇒ \(\frac{( a \ + \ b \omega \ + \ c\omega^2) (\omega + 1)}{(c\omega \ + \ a \omega^2 \ + \ b)} \)
⇒ \(\frac{( a \ + \ b \omega \ + \ c\omega^2) (-\omega^2)}{(c\omega \ + \ a \omega^2 \ + \ b)} \)
⇒ \(-\frac{( a\omega^2 \ + \ b \ + \ c\omega)}{(c\omega \ + \ a \omega^2 \ + \ b)} \)
⇒ -1
∴ The required value is -1.
Cube Roots of Unity Question 11:
If f(x) and g(x) are two polynomials such that the polynomial P(x) = f(x3) + x g(x3) is divisible by x2 + x + 1, then P(1) is equal to ________.
Answer (Detailed Solution Below) 0
Cube Roots of Unity Question 11 Detailed Solution
Explanation:
Given:
P(x) = ƒ(x3) + xg(x3)...(1)
Roots of x2 + x + 1 are ω and ω2 as ω2 + ω + 1 = 0
where ω is the cube root of unity
Now P(x) is divisible by x2 + x + 1 ⇒ P(x) = Q(x)(x2 + x + 1)
So P(ω) = P(ω2) = 0 --(2) ---- (Since roots of x2 + x + 1 are ω and ω2)
Now put x = ω and ω2 in equation (1)
P (ω) = f (1) + ω g (1) = 0 …(3) ------(Since ω3 = 1)
P (ω2) = f (1) + ω2 g (1) = 0 …(4)
Subtracting (3) and (4)
ω g (1) - ω2 g (1) = P (ω) - P (ω2)
from (2)
(ω - ω2) g (1) = 0
As ω - ω2 ≠ 0 so g (1) = 0 -----(5)
Adding (3) and (4)
2 f (1) – g (1) = P(ω) + P(ω2) -----(Since ω2 + ω = -1)
From (2)
g (1) = 2 f (1)
From (5) we get
f (1) = g (1) = 0
Therefore , P (1) = f (1) + g (1)
= 0 + 0
= 0
Cube Roots of Unity Question 12:
\({\left( {\cos 2{\rm{\theta }} + {\rm{i}}\sin 2{\rm{\theta }}} \right)^{ - 3}}{\left( {\cos 3{\rm{\theta }} - {\rm{i}}\sin 3{\rm{\theta }}} \right)^{ - 2}}{\left( {\sin {\rm{\theta }} - {\rm{i}}\cos {\rm{\theta }}} \right)^{ - 3}}\) is equal to
Answer (Detailed Solution Below)
Cube Roots of Unity Question 12 Detailed Solution
\(\rm {\left( {\cos 2{\rm{\theta }} + {\rm{i}}\sin 2{\rm{\theta }}} \right)^{ - 3}}{\left( {\cos 3{\rm{\theta }} - {\rm{i}}\sin 3{\rm{\theta }}} \right)^{ - 2}}{\left( {\sin {\rm{\theta }} - {\rm{i}}\cos {\rm{\theta }}} \right)^{ - 3}}\)
\(\rm = {\left( {{{\rm{e}}^{{\rm{i}}2{\rm{\theta }}}}} \right)^{ - 3}}.{\left( {{{\rm{e}}^{ - {\rm{i}}3{\rm{\theta }}}}} \right)^{ - 2}}.{\left( -i\cdot {{{\rm{e}}^{ {\rm{i\theta }}}}} \right)^{ - 3}}\)
\(\rm = {{\rm{e}}^{ - {\rm{i}}6{\rm{\theta }}}}.{{\rm{e}}^{{\rm{i}}6{\rm{\theta }}}}\cdot (-i)\cdot{{\rm{e}}^{{\rm{-i}}3{\rm{\theta }}}} =(- i)\cdot {{\rm{e}}^{{\rm{-i}}3{\rm{\theta }}}}\)
\(\rm =- i\left(\cos 3{\rm{\theta }} - {\rm{i}}\sin 3{\rm{\theta \;}}\right)\)
Cube Roots of Unity Question 13:
The complex number z = x + iy, which satisfy the equation, \(\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1\) lies on
Answer (Detailed Solution Below)
X – axis
Cube Roots of Unity Question 13 Detailed Solution
\(\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1 \Rightarrow {\left| {x + iy - 5i} \right|^2} = {\left| {x + iy + 5i} \right|^2}\)
⇒ y = 0 ⇒ x – axis
Cube Roots of Unity Question 14:
Value of complex function \({\left\{ {\left| {\cos \left( {2n + 1} \right)\pi + i\sin n\pi } \right|} \right\}^i}\), where \(i = \sqrt { - 1} \), will be. (n is an integer value)
Answer (Detailed Solution Below)
real and non-negative
Cube Roots of Unity Question 14 Detailed Solution
f = |cos (2n + 1)π + isin nπ|i
for any n (integer value cos(2n + 1)π = ±1) and sin nπ = 0
so f = |±1 + 0|I = 1i
\( = {1^{\left( {0 + i} \right)}} = {1^{\left( {\cos \frac{\pi }{2} + i\sin \frac{\pi }{2}} \right)}} = {e^{{e^{i\frac{\pi }{2}}}}}\)
or we can say for multi values \(f = {e^{{e^{i\left( {4n + 1} \right)\frac{\pi }{2}}}}}\) for any values of n, function will always be real & non-negative.