Trigonometric Ratios MCQ Quiz - Objective Question with Answer for Trigonometric Ratios - Download Free PDF

Last updated on Jun 14, 2025

Latest Trigonometric Ratios MCQ Objective Questions

Trigonometric Ratios Question 1:

Comprehension:

Consider the following for the three (03) items that follow:
Let p = tan 2α   - tanα and q = cotα - cot 2α

What is tan2α equal to?

  1. (pq)/(p+q)
  2. (p+2q)/p
  3. p/(p+2q)
  4. p/(2p+q)

Answer (Detailed Solution Below)

Option 3 : p/(p+2q)

Trigonometric Ratios Question 1 Detailed Solution

Calculation: 

We are given:

We need to find in terms of p  and q .

We start by simplifying the expression

This simplifies further as:

Now, simplify the fraction inside the denominator:

Now, expand both terms using trigonometric identities:

Simplifying this expression gives:

∴ The correct answer is Option (c):

Trigonometric Ratios Question 2:

Comprehension:

Consider the following for the three (03) items that follow:
Let p = tan 2α   - tanα and q = cotα - cot 2α

What is (p+q) equal to?

  1. sec4α
  2. cosec4α
  3. 2sec4α
  4. 2cosec4α

Answer (Detailed Solution Below)

Option 4 : 2cosec4α

Trigonometric Ratios Question 2 Detailed Solution

Calculation: 

We are given:

We need to find p + q.

Simplifying both terms:

Now, factorizing and simplifying further:

Recognizing the sine identity, we get:

Finally, simplifying this:

The final result is:

∴ The correct answer is Option (4)

Trigonometric Ratios Question 3:

Comprehension:

Consider the following for the three (03) items that follow:
Let p = tan 2α   - tanα and q = cotα - cot 2α

What is (p/q) equal to?

  1. tanαtan2α
  2. cotαcot2α

Answer (Detailed Solution Below)

Option 3 : tanαtan2α

Trigonometric Ratios Question 3 Detailed Solution

Explanation:

We are given:

We rewrite q  in terms of tangent since 

Now we compute

Next, we find a common denominator for q :

Substituting this back into the formula for

Simplifying, we get:

∴ The correct answer is Option (c):

Trigonometric Ratios Question 4:

If a csθ + b sin θ = c, and a sin θ - b cos θ = d, then

  1. a+ b= c+ d2
  2. a- b= c- d2
  3. a+ 2b= 3+ d2
  4. 2a+ 3b= c+ d2

Answer (Detailed Solution Below)

Option 1 : a+ b= c+ d2

Trigonometric Ratios Question 4 Detailed Solution

Trigonometric Ratios Question 5:

Algebraic and Geometrical Ability

sin2 30° + cos45° + sin2 60° + cos2 120° + sin2 150° =

  1. 1
  2. 2

Answer (Detailed Solution Below)

Option 4 : 2

Trigonometric Ratios Question 5 Detailed Solution

Top Trigonometric Ratios MCQ Objective Questions

If sin x + sin2x = 1, then value of cos2x + cos4 x is

  1. 1
  2. 2
  3. 1.5
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 1

Trigonometric Ratios Question 6 Detailed Solution

Download Solution PDF

Concept:

sin2x + cos2x = 1

Calculation:

Given: sin x + sin2 x = 1

As we know that, sin2x + cos2x = 1

⇒ sin x + (1 – cos2 x) = 1

⇒ sin x = cos2 x ----(1)

⇒ sin2 x = cos4 x (Using (1)) 

⇒ cos2 x + cos4 x = sin x + sin2 x = 1

Given that (1 + cos2A) = 3sinA.cosA, then find the value of cotA

  1. -1 or 1/2
  2. 1 or 1/2
  3. 1 or -1/2
  4. -1 or -1/2

Answer (Detailed Solution Below)

Option 2 : 1 or 1/2

Trigonometric Ratios Question 7 Detailed Solution

Download Solution PDF

Given:

(1 + cos2A) = 3sinA.cosA

Solution:

Dividing by cos2A,

⇒ (1 + cos2A) = 3sinA.cosA

⇒ (1 + sec2A) = 3tanA

We know that: sec2A = (1 + tan2A)

⇒ 2 + tan2A = 3tanA

⇒ tan2A – 3tanA + 2 = 0

⇒ (tan A – 1) (tan A – 2) = 0

⇒ tan A = 1 or 2

∴ cot A = 1 or 1/2

If tan θ = , then sin θ is

  1. None of these 

Answer (Detailed Solution Below)

Option 2 :

Trigonometric Ratios Question 8 Detailed Solution

Download Solution PDF

Calculation:

Given tan θ = .

Consider a right angled triangle with perpendicular 4 units and base 3 units.

By pythagorus theorem h = 

⇒ h = 5.

∴ sin θ = 

⇒ sin θ = 

We know that tan function is negative in 2nd and 4th quadrant.

Sin function is positive in 2nd quadrant and negative in 4th quadrant.

If θ is in 2nd quadrant, sin θ  = .

If θ is in 4th quadrant, sin θ = .

sin θ can be  or .

If  and θ lies in the first quadrant, then the value of cos (30 + θ) + cos (45 – θ) + cos (120 – θ) is

Answer (Detailed Solution Below)

Option 1 :

Trigonometric Ratios Question 9 Detailed Solution

Download Solution PDF

Concept:

  • sin2 x + cos2 x = 1
  • cos (A + B) = cos A cos B – sin A sin B
  • cos (A – B) = cos A cos B + sin A sin B

Calculation:

Given:  and θ is in 1st quadrant

cos (30 + θ) = cos 30 cos θ – sin 30 sin θ

     ----(1)

cos (45 – θ) = cos 45 cos θ + sin 45 sin θ

      ----(2)

cos (120 – θ) = cos 120 cos θ + sin 120 sin θ

      

 ----(3)

Adding (1), (2) and (3)

If (cosec x + cot x)/(cosec x – cot x) = 7. Then, find the value of (4sin2x + 1)/(4sin2x – 1).

  1. 12/11
  2. 11/3
  3. 13/5
  4. 12/7

Answer (Detailed Solution Below)

Option 2 : 11/3

Trigonometric Ratios Question 10 Detailed Solution

Download Solution PDF

Given

(cosec x + cot x)/(cosec x – cot x) = 7

Formula used

Cos2x = 1 – sin2x

Calculation

(cosec x + cot x)/(cosec x – cot x) = 7

⇒ (cosec x + cot x = 7(cosec x – cot x)

⇒ 8cot x = 6 cosec x

⇒ (8cos x)/sin x = 6/sin x

⇒ Cos x = 3/4

⇒ Cos2 x = 9/16

⇒ Sin2 x = 1 – 9/16

⇒ Sin2 x = 7/16

⇒ (4sin2x + 1)/(4sin2x – 1) = (4 × 7/16 + 1)/(4 × 7/16 – 1)

⇒ (7/4 + 1)/(7/4 –1)

⇒ (11/4)/(3/4)

⇒ 11/3

∴ The value of  (4sin2x + 1)/(4sin2x 1) is 11/3

Answer (Detailed Solution Below)

Option 3 :

Trigonometric Ratios Question 11 Detailed Solution

Download Solution PDF

If , then what is the value of 

Answer (Detailed Solution Below)

Option 2 :

Trigonometric Ratios Question 12 Detailed Solution

Download Solution PDF

Concept:

sec-1 x = cos-1 (1/x)

cosec-1 (x) + sec-1 (x) = π / 2

Calculation:

As we know that, 

sec-1 x = cos-1 (1/x)

As we know that,

cosec-1 (x) + sec-1 (x) = π / 2

If  tan then what is the value of (4cos A - 7sin A)? Given that A an acute angle.

Answer (Detailed Solution Below)

Option 1 :

Trigonometric Ratios Question 13 Detailed Solution

Download Solution PDF

Given:

tan 

⇒ tan A = 11/60

Formulas used:

tan A = Perpendicular/Base, where A is an acute angle

Pythagoras Theorem 

In triangle xyz, xz = Hypotenuse

(xz)2 = (xy)2 + (yz)2

Calculation:

(xz)2 = 112 + 602 

⇒ xz = √3721 = 61 

Now,  (4cos A - 7sin A) 

⇒ 4 × B/H - 7 × P/H 

⇒ 4 × 60/61 - 7 × 11/61 

⇒ 240/61 - 77/61 = 163/61 

⇒ 

∴ (4cos A - 7sin A) =  

If sin (A + B) = cos (A - B) = , acute angles of A and B are

  1. 45° and 15°
  2. 30° and 60°
  3. 15° and 60°
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 45° and 15°

Trigonometric Ratios Question 14 Detailed Solution

Download Solution PDF

Concept:

  • sin 60° = 

  • cos 30° = 

Calculation:

Since, sin (A + B) = 

⇒ sin (A + B) = sin 60° 

⇒ A + B = 60°      ----(1)

Also, cos (A - B) = 

⇒ cos (A - B) = cos 30° 

⇒ A - B = 30°      ----(2)

On solving equations (1) & (2), we get,

A = 45° and B = 15° 

Hence, acute angles of A and B are 45° and 15° respectively.

Evaluate: 2 tan2 45° + cos2 30° - sin2 60°

  1. 1/2
  2. 2
  3. 0
  4. 1

Answer (Detailed Solution Below)

Option 2 : 2

Trigonometric Ratios Question 15 Detailed Solution

Download Solution PDF

Given:

We have to evalute 2 tan2 45° + cos2 30° - sin2 60°

Formula Used:

tan45° = 1 

Cos30° = √3/2

Sin60° = √3/2

Calculation:

2 tan2 45° + cos2 30° - sin2 60°

⇒ 2 × 12 + (√3/2)2 – (√3/2)2

⇒ 2 + 3/4 – 3/4

⇒ 2

∴ The value of 2 tan2 45° + cos2 30° - sin2 60° is 2.

Hot Links: teen patti game online teen patti gold download apk teen patti casino download teen patti royal