Z Transform MCQ Quiz - Objective Question with Answer for Z Transform - Download Free PDF

Last updated on Jun 13, 2025

Latest Z Transform MCQ Objective Questions

Z Transform Question 1:

A system is defined by the difference equation

y(n) = 1.8y(n - 1) - 0.72y (n - 2) + x (n) + 0.5x (n - 1), then the system is 

  1. stable
  2. unstable
  3. marginally stable
  4. none of the above

Answer (Detailed Solution Below)

Option 2 : unstable

Z Transform Question 1 Detailed Solution

Concept:

For a linear time-invariant (LTI) discrete-time system, stability is determined by the location of the poles (roots of the characteristic equation). The system is:

  • Stable if all poles lie inside the unit circle (|z| < 1).
  • Unstable if any pole lies outside the unit circle (|z| > 1).
  • Marginally stable if poles lie on the unit circle and are non-repeating.

Given:

Difference equation:

y(n) = 1.8y(n - 1) - 0.72y (n - 2) + x (n) + 0.5x (n - 1)

Characteristic equation (from homogeneous part):

\(H(z): z^2 - 1.8z + 0.72 = 0 \)

Calculation:

Use the quadratic formula to find roots:

 \(\frac{1.8 \pm \sqrt{(1.8)^2 - 4 \cdot 0.72}}{2}\)

\(z = \frac{1.8 \pm 0.6}{2} ⇒ z = 1.2\)

Since one root is greater than 1, the system is unstable.

Z Transform Question 2:

An LTI system is minimum phase if

  1. All poles are inside unit circle
  2. All zeros are inside unit circle
  3. All poles are outside unit circle
  4. All poles and zeros are inside unit circle

Answer (Detailed Solution Below)

Option 4 : All poles and zeros are inside unit circle

Z Transform Question 2 Detailed Solution

Explanation:

Minimum Phase LTI System

Definition: A Linear Time-Invariant (LTI) system is considered to be a minimum phase system if all its poles and zeros are located within the unit circle in the Z-plane. The unit circle is defined as the set of points in the complex plane where the magnitude of the complex number is equal to 1. For a minimum phase system, both stability and minimum phase conditions are satisfied.

Key Characteristics of a Minimum Phase System:

  • All poles of the system must lie strictly inside the unit circle. This ensures the system is stable.
  • All zeros of the system must also lie strictly inside the unit circle. This ensures the system has the minimum phase property.
  • The system's phase response is minimized, which is crucial in many control and signal processing applications where phase linearity or minimal phase shift is required.

Explanation of the Correct Option:

The correct option is:

Option 4: All poles and zeros are inside the unit circle.

This is the correct condition for a minimum phase LTI system. For a system to be classified as minimum phase, it is not sufficient for just the poles or just the zeros to be inside the unit circle—both must satisfy this condition. This ensures that the system is stable and has the minimum phase property.

Z Transform Question 3:

Two systems h[n] = A(b1)n u[n] and h2[n] = A(b2)n u[n] are cascaded. If the effective \(H(z)=\frac{4}{4-z^{-2}}\), find a possible value of (A, b1, b2)

  1. A = 1/2, b1 = 1/2, b2 = -1/2
  2. A = 2, b1 = 2, b2 = -2
  3. A = 1, b1 = 1/2, b2 = -1/2
  4. A = 1, b1 = 1, b2 = -1

Answer (Detailed Solution Below)

Option 3 : A = 1, b1 = 1/2, b2 = -1/2

Z Transform Question 3 Detailed Solution

Explanation:

Analysis of the Given Problem:

The problem involves cascading two systems with impulse responses h1[n] = A(b1)nu[n] and h2[n] = A(b2)nu[n]. The overall transfer function of the cascaded system is given as:

H(z) = 4 / (4 - z-2).

We need to determine the possible values of A, b1, and b2 that satisfy the given transfer function. Let us solve step-by-step:

Step 1: Analyze the impulse response and transfer function of individual systems

The impulse response of the first system is:

h1[n] = A(b1)nu[n],

where u[n] is the unit step function. The Z-transform of h1[n] is:

H1(z) = A / (1 - b1z-1) for |z| > |b1|.

Similarly, the impulse response of the second system is:

h2[n] = A(b2)nu[n].

The Z-transform of h2[n] is:

H2(z) = A / (1 - b2z-1) for |z| > |b2|.

Step 2: Combine the two systems

When the two systems are cascaded, the overall transfer function is the product of the transfer functions of the individual systems:

H(z) = H1(z) × H2(z).

Substituting the expressions for H1(z) and H2(z):

H(z) = [A / (1 - b1z-1)] × [A / (1 - b2z-1)].

H(z) = A2 / [(1 - b1z-1)(1 - b2z-1)].

Step 3: Match the given H(z)

The given H(z) is:

H(z) = 4 / (4 - z-2).

To match this with the derived expression, rewrite the denominator of the given H(z):

4 - z-2 = (2 - z-1)(2 + z-1).

So, the given H(z) can be expressed as:

H(z) = 4 / [(2 - z-1)(2 + z-1)].

Comparing this with the derived H(z), we identify:

b1 = 1/2, b2 = -1/2, and A2 = 1.

Thus, A = 1 (since A must be positive), b1 = 1/2, and b2 = -1/2.

Correct Option: Option 3 (A = 1, b1 = 1/2, b2 = -1/2)

Z Transform Question 4:

The ROC of a system is the

  1. range in which the signal is free of noise
  2. range of frequency for which the z-transform exists
  3. range of frequency for which the signal gets transmitted
  4. range of z for which the z-transform converges
  5. None of the above.

Answer (Detailed Solution Below)

Option 4 : range of z for which the z-transform converges

Z Transform Question 4 Detailed Solution

Z Transform:

The z transform for a discrete signal x[n] is given by:
           X[z] = 

The set of all values of z where X(z) converges to a finite value is called as Radius of Convergence (ROC).
The ROC does not contain any poles.
If x[n] is a finite duration causal sequence or right-sided sequence, then the ROC is entire z-plane except at z = 0.
If x[n] is a finite duration anti-causal sequence or left-sided sequence, then the ROC is the entire z-plane except at z =∞ .

Z Transform Question 5:

If Z(un) = f(z), then Z(a − nun) (where Z denotes z-transform) equals to :

  1. \(f\left(\frac{z}{2 a}\right)\)
  2. f (z)
  3. \(f\left(\frac{z}{ a}\right)\)
  4. f (az) 

Answer (Detailed Solution Below)

Option 3 : \(f\left(\frac{z}{ a}\right)\)

Z Transform Question 5 Detailed Solution

Concept:

The z-transform of a scaled sequence follows the scaling property of z-transforms, which states that if \( Z(u_n) = f(z) \), then \( Z(a^{-n}u_n) = f(az) \). This property is crucial for analyzing discrete-time signals with exponential scaling.

Calculation:

Given:

1. Original z-transform: \(Z(u_n) = f(z) \)
2. Scaled sequence: \(a^{-n}u_n\)

Solution:

1. Apply the scaling property of z-transforms:
\( Z(a^{-n}u_n) = f\left(\frac{z}{a}\right) \)

2. This result comes from the fundamental scaling property where multiplication by \( a^{-n} \) in the time domain corresponds to scaling the z-domain variable by \( \frac{1}{a} \).

Final Answer:

The correct transformed expression is 3) \( f\left(\frac{z}{a}\right) \).

Top Z Transform MCQ Objective Questions

Find the z transform of (n + 1)2

  1. \(\frac{{{z^2}\left( {z + 1} \right)}}{{{{\left( {z - 1} \right)}^3}}}\)
  2. \(\frac{{\left( {2z + 1} \right)}}{{{{\left( {z - 1} \right)}^3}}}\)
  3. \(\frac{{\left( {2 + z} \right)}}{{{{\left( {z - 1} \right)}^2}}}\)
  4. \(\frac{{\left( {3z + 2} \right)}}{{z - 1}}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{{{z^2}\left( {z + 1} \right)}}{{{{\left( {z - 1} \right)}^3}}}\)

Z Transform Question 6 Detailed Solution

Download Solution PDF

Definition:

Z transform is defined as

\(X\left( z \right) = \mathop \sum \limits_{ - \infty }^\infty x\left[ n \right]{z^{ - n}}\)

Properties:

Differentiation in z domain:

If X(z) is a z transform of x(n), then the z transform of n x(n) is,

\(nx\left( n \right) \leftrightarrow - z\frac{d}{{dz}}\left( {X\left( z \right)} \right)\)

Time-shifting:

If X(z) is a z transform of x(n), then the z transform of x(n – n0) is,

\(x\left( {n - {n_0}} \right) \leftrightarrow {z^{ - {n_0}}}X\left( z \right)\)

Application:

Let x(n) = 1

\(X\left( z \right) = \mathop \sum \limits_0^\infty {z^{ - n}} = \frac{1}{{1 - {z^{ - 1}}}} = \frac{z}{{z - 1}}\)

Now, by applying the property of differentiation in the z domain,

\(x\left( n \right) = n \leftrightarrow - z\frac{d}{{dz}}\left( {\frac{z}{{z - 1}}} \right) = \frac{z}{{{{\left( {z - 1} \right)}^2}}}\)

Now, by applying the property of differentiation in the z domain,

\(x\left( n \right) = {n^2} \leftrightarrow - z\frac{d}{{dz}}\left( {\frac{z}{{{{\left( {z - 1} \right)}^2}}}} \right) = \frac{{z\left( {z + 1} \right)}}{{{{\left( {z - 1} \right)}^3}}}\)

Now, by applying the property of time-shifting,

\(x\left( n \right) = {\left( {n + 1} \right)^2} \leftrightarrow z.\frac{{z\left( {z + 1} \right)}}{{{{\left( {z - 1} \right)}^3}}} = \frac{{{z^2}\left( {z + 1} \right)}}{{{{\left( {z - 1} \right)}^3}}}\)

The z-transform of a signal is given by \(X\left( z \right) = \frac{1}{4}\;\frac{{{z^{ - 1}}\left( {1 - {z^{ - 4}}} \right)}}{{{{\left( {1 - {z^{ - 1}}} \right)}^2}}}\), its final value is

  1. 1/4
  2. Zero
  3. 1
  4. Infinity

Answer (Detailed Solution Below)

Option 3 : 1

Z Transform Question 7 Detailed Solution

Download Solution PDF

Concept:

Final value theorem:

It states that:

\(x\left( \infty \right) = \mathop {\lim }\limits_{z \to 1} \left( {1 - {z^1}} \right)X\left( z \right)\)

Conditions:

1. It is valid only for causal systems. 

2. Pole of (1 – z-1) X(z) must lie inside the unit circle.

Calculation:

The final value theorem for z-transform is:

\( = \mathop {\lim }\limits_{z \to 1} \frac{1}{4}\frac{{\left( {1 - {z^{ - 1}}} \right){z^{ - 1}}\left( {1 - {z^{ - 4}}} \right)}}{{{{\left( {1 - {z^{ - 1}}} \right)}^2}}}\)

\(= \mathop {\lim }\limits_{z \to 1} \frac{1}{4}\;\frac{{\left( {{z^2} - 1} \right)\left( {{z^2} + 1} \right)}}{{{z^4}\left( {z - 1} \right)}}\)

\( = \mathop {\lim }\limits_{z \to 1} \frac{1}{4}\;\frac{{\left( {z + 1} \right)\left( {{z^2} + 1} \right)}}{{{z^4}}} \)

= 1/4 × 1 × 2 × 2 = 1

Two discrete-time linear time-invariant systems with impulse responses

h1[n] = δ[n - 1] + δ[n + 1] and h2[n] = δ[n] + δ[n - 1] are connected in cascade, where δ[n] is the Kronecker delta. The impulse response of the cascaded system is

  1. δ[n - 1] δ[n] + δ[n + 1] δ[n - 1]
  2. δ[n - 2] + δ[n + 1]
  3. δ[n - 2] + δ[n - 1] + δ[n] + δ[n + 1]
  4. δ[n] δ[n - 1] + δ[n - 2] δ[n + 1]

Answer (Detailed Solution Below)

Option 3 : δ[n - 2] + δ[n - 1] + δ[n] + δ[n + 1]

Z Transform Question 8 Detailed Solution

Download Solution PDF

Concept:

The z-transform of a unit impulse function or Kronecker delta δ [n] ↔ 1

The time-shifting affects the z-transform as:

x[n - n0] = z -n0 X(z)

Application:

Given:

h1[n] = δ[n - 1] + δ[n + 1] 

h2[n] = δ[n] + δ[n - 1] 

If h1[n]and h2[n] are cascaded connected then h[n] = h1[n] * h2[n]

Where '*' denotes convolution.

h[n] = h1[n] * h2[n]

Taking z-transform both side

H[z] = H1[z] ⋅ H2[z]

H[z] = (z-1 + z) ⋅ (1 + z-1) = (z-1 + z-2 + z + 1 )

Taking inverse z-transform both side

h[n] = δ[n-1] + δ[n-2] + δ[n+1] + δ[n]

∴ Impulse response of the cascaded system is δ[n - 2] + δ[n - 1] + δ[n] + δ[n + 1]

Consider a signal \(x\left[ n \right] = {\left( {\frac{1}{2}} \right)^n}1\left[ n \right]\), where 1[n] = 0 if n < 0, and 1[n] = 1 if n ≥ 0. The z-transform of x[n - k], k > 0 is \(\frac{{{z^{ - k}}}}{{1 - \frac{1}{2}\;{z^{ - 1}}}}\) with region of convergence being

  1. |z| < 2
  2. |z| > 2
  3. |z| < 1/2
  4. |z| > 1/2

Answer (Detailed Solution Below)

Option 4 : |z| > 1/2

Z Transform Question 9 Detailed Solution

Download Solution PDF

Concept:

Z transform:

The Z transform of x(t) is, denoted by X(z), is defined as:

\(X\left( z \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left( n \right){z^{ - n}}\)

\({a^n}u\left( n \right)\mathop \to \limits^{ZT} \frac{1}{{1 - a{z^{ - 1}}}}\); ROC:|z|>|a|

Shifting property:

If \(x\left( n \right)\mathop \to \limits^{ZT} x\left( z \right)\) ; ROC: R

Then \(x\left( {n - {n_0}} \right)\mathop \to \limits^{ZT} {z^{ - {n_0}}}x\left( z \right)\); ROC: R

The time-shifting will not affect ROC.

Calculation:

Given that, \(x\left( n \right) = {\left( {\frac{1}{2}} \right)^n}1\left[ n \right]\)

Z Transform (ZT) of x(n) will be,

\(x\left( z \right) = \frac{z}{{z - \frac{1}{2}}} = \frac{1}{{1 - \frac{1}{2}{z^{ - 1}}}}\) ; ROC: \(\left| z \right| > \frac{1}{2}\)

And, \(z\left( {x\left( {n - k} \right)} \right) = \;\frac{{{z^{ - k}}}}{{1 - \frac{1}{2}{z^{ - 1}}}}\) ; ROC: \(\left| z \right| > \frac{1}{2}\)

The causal signal with z-transform z2 (z - a)-2 is

(u[n] is the unit step signal)

  1. (n + 1) an u[n]
  2. a2n u[n]
  3. n-1 an u[n]
  4. n2 an u[n]

Answer (Detailed Solution Below)

Option 1 : (n + 1) an u[n]

Z Transform Question 10 Detailed Solution

Download Solution PDF

Concept:

Causal Signals:

  • Causal Signals are signals that are zero for all negative time.
  • Causality in a system determines whether a system relies on future information of a signal x [n+1].
  • Talking about “causality” in signals, it means whether they are zero to the left of t = 0 or zero to the right of t = 0.
  • A causal signal is zero for t < 0.
  • A system is said to be causal if its output depends upon present and past inputs, and does not depend upon future input. 

 

Calculation:

Given a casual signal,

X (Z) = z2 (z - a)-2

\(X(Z) = \frac{{{z^2}}}{{{{\left( {a - z} \right)}^2}}}\)

From standard Z-Transform,

\(n{\left( a \right)^n}u\left( n \right) \leftrightarrow \frac{{az}}{{{{\left( {z - a} \right)}^2}}}\)

\(n{\left( a \right)^{n - 1}}u\left( n \right) \leftrightarrow \frac{z}{{{{\left( {z - a} \right)}^2}}}\)

From the time-shifting property,

\(x\left( {n - {n_0}} \right) \leftrightarrow {z^{ - {n_0}}}X\left( z \right)\)

\(\left( {n + 1} \right){\left( a \right)^{n + 1 - 1}}u\left( {n + 1} \right) \leftrightarrow z\left[ {\frac{z}{{{{\left( {z - a} \right)}^2}}}} \right]\)

\(\left( {n + 1} \right){\left( a \right)^n}u\left( {n + 1} \right) \leftrightarrow \frac{{{z^2}}}{{{{\left( {z - a} \right)}^2}}}\)

Since,

\(X\left( z \right) = \frac{{{z^2}}}{{{{\left( {z - a} \right)}^2}}}\)

Therefore,

\(x\left( n \right) = \left( {n + 1} \right){\left( a \right)^n}u\left( {n + 1} \right)\)

The given signal is causal, therefore,

\(x\left( n \right) = \left( {n + 1} \right){\left( a \right)^n}u\left( n \right)\)

Important Points

Z-Transform basic functions:

Sequence

Z-Transform

δ (n)

1

u (n)

\(\frac{z}{{z - 1}}\)

an

\(\frac{z}{{z - a}}\)

n (an) u (n)

\(\frac{{az}}{{{{\left( {a - z} \right)}^2}}}\)

n (an - 1) u (n)

\(\frac{z}{{{{\left( {a - z} \right)}^2}}}\)

n (an - 1) u (n - 1)

\(\frac{1}{{z - a}}\)

What is the inverse Z transform of the given signal?

\(X(Z) \space = \space \frac {(Z-1) \space (Z+0.8)} {(Z-0.5)(Z+0.2)} \space \)

  1. 8δ[n] - 1.857(0.5)u[n] + 5.143(-0.2)u[n] 
  2. 8 + 1.857(0.5)u[n] - 5.143(-0.2)u[n] 
  3. 8δ[n] - 1.857(0.5)u[n] - 5.143(-0.2)u[n] 
  4. 8δ[n] + 1.857(0.5)u[n] + 5.143(-0.2)​u[n] 

Answer (Detailed Solution Below)

Option 3 : 8δ[n] - 1.857(0.5)u[n] - 5.143(-0.2)u[n] 

Z Transform Question 11 Detailed Solution

Download Solution PDF

Concept:

Z transform of \(\dfrac {Z}{Z-a} \space \rightarrow \space a^n u(n ), \space \space \space |Z| \space > \space a \space\)

Analysis:

\(X(Z) \space = \space \dfrac {(Z-1) \space (Z+0.8)} {(Z-0.5)(Z+0.2)} \space \)

Divide by Z on both side

\(\dfrac{X(Z)}{Z} \space = \space \dfrac {(Z-1) \space (Z+0.8)} {Z(Z-0.5)(Z+0.2)} \space \)

By partial fraction 

\(\dfrac{X(Z)}{Z} \space = \space \dfrac {8}{Z} \space \space -\space \dfrac{1.857}{Z-0.5} \space - \dfrac {5.142}{Z+0.2} \space \)

\({X(Z)}\space = \space {8} \space \space -\space \dfrac{\space Z\space (1.857) }{Z-0.5} \space - \dfrac {Z\space (5.142)}{Z+0.2} \space \)

Taking inverse Z transform

x(n) = 8 δ(n) - 1.857 (0.5)n u(n) - 5.142 (-0.2)n u(n)

Consider the following statements regarding a linear discrete-time system

H(z) = (z2 + 1)/[(z + 0.5) (z – 0.5)]

A. The system is stable

B. The initial value h(0) of the impulse response is -4

C. The steady-state value of the impulse response is zero.

Which of these statements is/are correct?

  1. A, B and C
  2. A and B
  3. A and C
  4. B and C

Answer (Detailed Solution Below)

Option 3 : A and C

Z Transform Question 12 Detailed Solution

Download Solution PDF

Concept:

For a causal signal x(n), the initial value theorem states that:

\(x\left( 0 \right) = \mathop {\lim }\limits_{z \to \infty } X\left( z \right)\)

For a causal signal x(n), the final value theorem states that:

\(x\left( \infty \right) = \mathop {\lim }\limits_{z \to 1} \left[ {z - 1} \right]X\left( z \right)\)

Calculation:

Given:

\(H\left( z \right) = \frac{{{z^2} + 1}}{{\left( {z + 0.5} \right)\left( {z - 0.5} \right)}}\)

∴ Poles = 0.5 and -0.5

Zeros = ±j

Hence all the poles are lying inside the unit circle. Therefore, the system is stable.

Now by using the initial value theorem, we get

\(h\left( 0 \right) = \mathop {\lim }\limits_{z \to \infty } H\left( z \right) = \mathop {\lim }\limits_{z \to \infty } \frac{{{z^2} + 1}}{{\left( {z + 0.5} \right)\left( {z - 0.5} \right)}} = 1\)

Final Value theorem:

\(h\left( \infty \right) = \mathop {\lim }\limits_{z \to 1 } (z-1)H\left( z \right) \)

\(h\left( \infty \right) = \mathop {\lim }\limits_{z \to 1 } \frac{(z-1){{z^2} + 1}}{{\left( {z + 0.5} \right)\left( {z - 0.5} \right)}}=0\)

Hence, statement C is also correct.

If L[f(t)] = \(\frac{2(\text{s}+1)}{\text{s}^{2}+2\text{s}+5}\), then f(0+) and f(∞) are given by

  1. 2, 0 respectively
  2. 0, 1 respectively
  3. 0, 2 respectively
  4. 2/5, 0 respectively

Answer (Detailed Solution Below)

Option 1 : 2, 0 respectively

Z Transform Question 13 Detailed Solution

Download Solution PDF

Concept:

The initial value theorem is given by:

In time domain:

\(Lt\overset{t=0}{\rightarrow}x(t) \)

In the Laplace domain:

\(Lt\overset{s=∞}{\rightarrow}sx(s) \)

The final value theorem is given by:

In time domain:

\(Lt\overset{t=∞}{\rightarrow}x(t) \)

In the Laplace domain:

\(Lt\overset{s=0}{\rightarrow}sx(s) =Lt\overset{s=0}{\rightarrow}sx(s) \)     

Calculation:

Given,  L[f(t)] = \(\frac{2(\text{s}+1)}{\text{s}^{2}+2\text{s}+5}\)
L[f(0)] = \(Lt\overset{s=∞}{\rightarrow}\frac{2s(\text{s}+1)}{\text{s}^{2}+2\text{s}+5} \)
\(Lt\overset{s=∞}{\rightarrow}{2s^2{(1+{1\over s})}\over s^2({1+{2\over s}+{5\over s^2}})}\)
L[f(0)] = 2
L[f(∞)] = \(Lt\overset{s=0}{\rightarrow}\frac{2s(\text{s}+1)}{\text{s}^{2}+2\text{s}+5} \)
L[f(∞)] = 0

Consider the z-transform X (z) = 5z2 +4z-1 + 3; 0 < |z| < ∞. The inverse z-transform x[n] is

  1. 5δ[n + 2] + 3δ[n] + 4δ[n - 1]
  2. 5δ[n - 2] + 3δ[n] + 4δ[n + 1]
  3. 5u[n + 2] + 3u[n] + 4u[n - 1]
  4. 5u[n - 2] + 3u[n] + 4u[n + 1]

Answer (Detailed Solution Below)

Option 1 : 5δ[n + 2] + 3δ[n] + 4δ[n - 1]

Z Transform Question 14 Detailed Solution

Download Solution PDF

Concept:

The Z-transform is defined by

\(X\left( z \right) = \mathop \sum \limits_{k = 0}^\infty x\left[ k \right]{z^{ - k}}\)

Time-shifting:

If X(z) is a z transform of x(n), then the z transform of x(n – n0) is,

\(x\left( {n - {n_0}} \right) \leftrightarrow {z^{ - {n_0}}}X\left( z \right)\)

\(x\left( {n + {n_0}} \right) \leftrightarrow {z^{ {n_0}}}X\left( z \right)\)

Z.T{δ(n)} = 1

Analysis:

Given:

X(z) = 5z2 +4z-1 + 3; 0 < |z| < ∞

Taking the inverse z transform, we get

x(n) = 5δ(n + 2) + 4δ(n - 1) + 3δ 

For an all pass system \(H\left( z \right) = \;\frac{{{z^{ - 1}} - b}}{{1 - a{z^{ - 1}}}}\) If Re(a)≠0, Im(a)≠0, then b equals.

  1. a
  2. a*
  3. 1/a*
  4. 1/a

Answer (Detailed Solution Below)

Option 2 : a*

Z Transform Question 15 Detailed Solution

Download Solution PDF

Concept:

For all-pass systems poles must lie on the left and zeroes on the mirror image of the pole that is on the right.

Calculation:

For all pass system,

If pole is at  z = p, then zero will be at z = 1/p*

Pole of H(z) is at z = a

∴zero of H(z) should be at \(z = \frac{1}{{{a^*}}}\)           

zero of H(z) is z = 1/b

\( \Rightarrow \frac{1}{b} = \frac{1}{{{a^*}}} \Rightarrow b = {a^*}\)

Get Free Access Now
Hot Links: teen patti lotus teen patti list teen patti gold downloadable content real cash teen patti teen patti rules