Divergence Theorem MCQ Quiz in मराठी - Objective Question with Answer for Divergence Theorem - मोफत PDF डाउनलोड करा

Last updated on Mar 22, 2025

पाईये Divergence Theorem उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Divergence Theorem एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Divergence Theorem MCQ Objective Questions

Top Divergence Theorem MCQ Objective Questions

Divergence Theorem Question 1:

Evaluate the surface integral \(\mathop{\int }_{S}\vec{F}\cdot ds\) when \(\vec{F}\) is given by \(\vec{F}=2xy~\hat{i}+8xz~\hat{j}+4yz~\hat{k}\) and S is the surface of tetrahedron whose vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Answer (Detailed Solution Below) 0 - 0.5

Divergence Theorem Question 1 Detailed Solution

Concept:

Gauss-divergence theorem:

\(\mathop{\int }_{S}\vec{F}\cdot ds=\iiint{\left( \vec{\nabla }\cdot \vec{F} \right)dV}\)

The tetrahedron is given as

Equation of xy is

F1 Sumit Madhu 07.08.20 D2

 

\(\frac{{y - {y_x}}}{{{y_4} - {y_x}}} = \frac{{x - {X_x}}}{{{x_4} - {X_x}}} \Rightarrow y = 1 - x\)

Equation of plane XYZ

\(\frac{x}{1} + \frac{y}{1} + \frac{z}{1} = 1\)

x + y + z = 1

Calculation:

\(\vec \nabla \cdot \vec F = \left( {\frac{\partial }{{\partial x}}\hat i + \frac{\partial }{{\partial y}}\hat j + \frac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {2xy\;\hat i + 8xz\;\hat j + 4yz\;\hat k} \right)\)

= 2y + 0 + 4y = 6y

∴ Integral is 6 \(\iiint{y~dx~dy~dz~}\)

\( = 6\mathop \smallint \limits_0^1 dx\mathop \smallint \limits_0^{1 - x} ydy\mathop \smallint \limits_0^{1 - x - y} dz\)

\(= 6\mathop \smallint \limits_0^1 dx\mathop \smallint \limits_0^{1 - x} y\left( {1 - x - y} \right)dy\)

\(= 6\mathop \smallint \limits_0^1 dx\mathop \smallint \limits_0^{1 - x} \left( {y - xy - {y^2}} \right)dy\)

\(= 6\mathop \smallint \limits_0^1 \frac{{{{\left( {1 - x} \right)}^3}}}{6}dx = - \left[ {\frac{{{{\left( {1 - x} \right)}^4}}}{4}} \right]_0^1\;\)

\(= \frac{1}{4} = 0.25\)

Divergence Theorem Question 2:

Find a unit normal to the surface x2y + 2xz = 4 at (2, -2, 3)

  1. \(\frac{1}{2}\left( { - 2{\rm{\hat i}} + 3{\rm{\hat j}} + 3{\rm{\hat k}}} \right)\)
  2. \(\frac{1}{3}\left( { - {\rm{\hat i}} + 2{\rm{\hat j}} + 3{\rm{\hat k}}} \right)\)
  3. \(\frac{1}{3}\left( { - {\rm{\hat i}} + 2{\rm{\hat j}} + 2{\rm{\hat k}}} \right)\)
  4. \(\frac{1}{2}\left( {3{\rm{\hat i}} + 4{\rm{\hat j}} + 4{\rm{\hat k}}} \right)\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{3}\left( { - {\rm{\hat i}} + 2{\rm{\hat j}} + 2{\rm{\hat k}}} \right)\)

Divergence Theorem Question 2 Detailed Solution

ϕ = x2y + 2xz

Grad ϕ is a vector normal to the surface ϕ = constant

\(\nabla \phi = \left( {\frac{\partial }{{\partial {\rm{x}}}}{\rm{\hat i}} + \frac{\partial }{{\partial {\rm{y}}}}{\rm{\hat j}} + \frac{\partial }{{\partial {\rm{z}}}}{\rm{\hat k}}} \right)\left( {{{\rm{x}}^2}{\rm{y}} + 2{\rm{xz}}} \right)\)

∇ϕ = î (2xy + 2z) + ĵ (x2) + k̂ (2x)

\(\begin{array}{l} {\left. {\nabla \phi } \right|_{\left( {2, - 2,3} \right)}} = - 2{\rm{\hat i}} + 4{\rm{\hat j}} + 4{\rm{\hat k}}\\ \left| {\nabla \phi } \right| = \sqrt {4 + 16 + 16} = 6 \end{array}\)  

Unit normal to the given surface at (2, -2, 3)

\(\frac{{\nabla \phi }}{{\left| {\nabla \phi } \right|}} = \frac{{ - 2{\rm{\hat i}} + 4{\rm{\hat j}} + 4{\rm{\hat k}}}}{6} = \frac{1}{3}\left( { - {\rm{\hat i}} + 2{\rm{\hat j}} + 2{\rm{\hat k}}} \right)\)

Divergence Theorem Question 3:

The direction of vector A is radially outward from the origin, with \(\left| A \right| = k{r^n}\) where \({r^2} = {x^2} + {y^2} + {z^2}\) and k is a constant. The value of n for which \(\nabla \cdot {\rm{A}} = 0\) is

Answer (Detailed Solution Below) -2

Divergence Theorem Question 3 Detailed Solution

Divergence of A in spherical coordinates is given as

\(\nabla \cdot {\rm{A}} = \frac{1}{{{{\rm{r}}^2}}}.\frac{\partial }{{\partial {\rm{\;r}}}}\left( {{{\rm{r}}^2}{{\rm{A}}_{\rm{r}}}} \right) = \frac{1}{{{{\rm{r}}^2}}}\frac{\partial }{{\partial {\rm{\;r}}}}\left( {{\rm{k}}{{\rm{r}}^{{\rm{n}} + 2}}} \right)\)

\( = \frac{{\rm{k}}}{{{{\rm{r}}^2}}}\left( {{\rm{n}} + 2} \right){{\rm{r}}^{{\rm{n}} + 1}}\)

Given that \(\nabla \cdot {\rm{A}} = 0\)

\( \Rightarrow {\rm{k}}\left( {{\rm{n}} + 2} \right){{\rm{r}}^{{\rm{n}} - 1}} = 0\)

\( \Rightarrow {\rm{n}} + 2 = 0{\rm{\;}} \Rightarrow {\rm{n}} = - 2\)

Divergence Theorem Question 4:

Find the value of \(\mathop \smallint \limits_s \vec F.\hat nds\), if \(F = \left( {x + 3y} \right)\hat i + \left( {y + 2z} \right)\hat j + \left( {x - 2z} \right)\hat k\)

Answer (Detailed Solution Below) 0

Divergence Theorem Question 4 Detailed Solution

Using divergence theorem

\({\rm{}}\mathop \oint \limits_s \vec {F.}\hat nds = \mathop \smallint \limits_v \nabla .F\ dv\)

\(\nabla .F = \left( {\hat i\frac{\partial }{{\partial x}} + \hat j\frac{\partial }{{\partial y}} + \hat k\frac{\partial }{{\partial z}}} \right).\left[ {\left( {x + 3y} \right)\hat i + \left( {y + 2z} \right)\hat j + \left( {x - 2z} \right)\hat k} \right]\)

\(\rm = 1 + 1 – 2 = 0\)

So, \(\mathop \oint \nolimits \widehat {F.}\hat nds = 0\)

Divergence Theorem Question 5:

\(V = \left\{ {\left( {x,y,z} \right)\epsilon{R^3},:1 \le {x^2} + {y^2} + {z^2} \le 4} \right\}\) find the value of \(\mathop \smallint \limits_s \vec F.\hat nds\), if \(F = \left( {x + 3y} \right)\hat l + \left( {y + 2z} \right)\hat j + \left( {x - 2z} \right)\hat k\)

Answer (Detailed Solution Below) 0

Divergence Theorem Question 5 Detailed Solution

Using divergence theorem

\(\begin{array}{l} {\rm{}}\mathop \oint \limits_s \widehat {F.}\hat nds = \mathop \smallint \limits_v \nabla .F\ dv\\ \nabla .F = \left( {\hat l\frac{\partial }{{\partial x}} + \hat j\frac{\partial }{{\partial y}} + \hat k\frac{\partial }{{\partial z}}} \right).\left[ {\left( {x + 3y} \right)\hat l + \left( {x + 2z} \right)\hat j + \left( {x + 2z} \right)\hat k} \right] \end{array}\)

= 1 + 1 – 2 = 0

So, \(\mathop \oint \nolimits \widehat {F.}\hat nds = 0\)

Get Free Access Now
Hot Links: teen patti master purana teen patti joy mod apk teen patti earning app teen patti classic teen patti star login