Distance between parallel planes MCQ Quiz in தமிழ் - Objective Question with Answer for Distance between parallel planes - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Apr 4, 2025

பெறு Distance between parallel planes பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Distance between parallel planes MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Distance between parallel planes MCQ Objective Questions

Top Distance between parallel planes MCQ Objective Questions

Distance between parallel planes Question 1:

If the distance between the planes 2x + y + 2 + 1 = 0 and 2x + y + z + α = 0 is 3 units, then product of all possible values of α is

  1. -43
  2. 43
  3. 53
  4. -53

Answer (Detailed Solution Below)

Option 4 : -53

Distance between parallel planes Question 1 Detailed Solution

Concept

The distance between two parallel planes \(ax + by + cz + d_1 = 0\) and \(ax + by + cz + d_2 = 0\) is given by the formula:

\(\text{Distance} = \frac{|d_2 - d_1|}{\sqrt{a^2 + b^2 + c^2}}\)

Calculation

\(3 = \frac{|a - 1|}{\sqrt{2^2 + 1^2 + 1^2}}\)

⇒ \(3 = \frac{|a - 1|}{\sqrt{4 + 1 + 1}}\)

⇒ \(3 = \frac{|a - 1|}{\sqrt{6}}\)

⇒ \(3\sqrt{6} = |a - 1|\)

⇒ \(a - 1 = 3\sqrt{6}\) or \(a - 1 = -3\sqrt{6}\).

Case 1: \(a - 1 = 3\sqrt{6}\)

\(a = 1 + 3\sqrt{6}\)

Case 2: \(a - 1 = -3\sqrt{6}\)

\(a = 1 - 3\sqrt{6}\)

The product of all possible values of a is:

\((1 + 3\sqrt{6})(1 - 3\sqrt{6}) = 1^2 - (3\sqrt{6})^2 = 1 - 9(6) = 1 - 54 = -53\)

Hence option 4 is correct

Distance between parallel planes Question 2:

The distance between the two planes 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is 

  1. 2 units
  2. 8 units 
  3. \(\frac{2}{\sqrt{29}}\) units
  4. 4 units  

Answer (Detailed Solution Below)

Option 3 : \(\frac{2}{\sqrt{29}}\) units

Distance between parallel planes Question 2 Detailed Solution

Concept Used:

The distance between two parallel planes \(ax + by + cz = d_1\) and \(ax + by + cz = d_2\) is given by \(\frac{|d_2 - d_1|}{\sqrt{a^2 + b^2 + c^2}}\).

Calculation

Given:

Plane 1: \(2x + 3y + 4z = 4\)

Plane 2: \(4x + 6y + 8z = 12\)

We can rewrite the second equation by dividing by 2: \(2x + 3y + 4z = 6\)

Now the equations are in the form \(ax + by + cz = d\).

Here, \(a = 2\), \(b = 3\), \(c = 4\), \(d_1 = 4\), and \(d_2 = 6\).

\(\text{Distance} = \frac{|6 - 4|}{\sqrt{2^2 + 3^2 + 4^2}}\)

\(\text{Distance} = \frac{2}{\sqrt{4 + 9 + 16}}\)

\(\text{Distance} = \frac{2}{\sqrt{29}}\)

Therefore, the distance between the two planes is \(\frac{2}{\sqrt{29}}\) units.

Hence option 3 is correct

Get Free Access Now
Hot Links: teen patti baaz teen patti gold download teen patti go online teen patti teen patti chart