A machine element develops principal stresses of magnitudes 2P and P. What is the maximum magnitude of P before the material reaches the yield stress fy as per Distortion Shear Energy Theory?

This question was previously asked in
ESE Civil 2015 Paper 1: Official Paper
View all UPSC IES Papers >
  1. fy
  2. \(\frac{{{{\rm{f}}_{\rm{y}}}}}{2}\)
  3. \(\frac{{{{\rm{f}}_{\rm{y}}}}}{{2\sqrt 3 }}\)
  4. \(\frac{{{{\rm{f}}_{\rm{y}}}}}{{\sqrt 3 }}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{{{{\rm{f}}_{\rm{y}}}}}{{\sqrt 3 }}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.5 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

Maximum shear strain energy / Distortion energy theory / Mises – Henky theory.

It states that inelastic action at any point in body, under any combination of stress begging, when the strain energy of distortion per unit volume absorbed at the point is equal to the strain energy of distortion absorbed per unit volume at any point in a bar stressed to the elastic limit under the state of uniaxial stress as occurs in a simple tension/compression test.

\(\frac{1}{2}\left[ {{{\left( {{{\rm{\sigma }}_1} - {{\rm{\sigma }}_2}} \right)}^2} + {{\left( {{{\rm{\sigma }}_2} - {{\rm{\sigma }}_3}} \right)}^2} + {{\left( {{{\rm{\sigma }}_3} - {{\rm{\sigma }}_1}} \right)}^2}} \right] \le {\rm{\sigma }}_{\rm{y}}^2\) for no failure

\(\frac{1}{2}\left[ {{{\left( {{{\rm{\sigma }}_1} - {{\rm{\sigma }}_2}} \right)}^2} + {{\left( {{{\rm{\sigma }}_2} - {{\rm{\sigma }}_3}} \right)}^2} + {{\left( {{{\rm{\sigma }}_3} - {{\rm{\sigma }}_1}} \right)}^2}} \right] \le {\left( {\frac{{{{\rm{\sigma }}_{\rm{y}}}}}{{{\rm{FOS}}}}} \right)^2}\) For design

ft7(61-84) images Q81e

It cannot be applied for material under hydrostatic pressure.

All theories will give the same results if loading is uniaxial.

Calculations:

Given, \({{\rm{\sigma }}_1} = 2{\rm{P}};{\rm{\;}}{{\rm{\sigma }}_2} = {\rm{P}};{\rm{\;}}{{\rm{\sigma }}_3} = 0{\rm{\;}}\)

\(\therefore \frac{1}{2}\left[ {{{\left( {2{\rm{P}} - {\rm{P}}} \right)}^2} + {{\left( {{\rm{P}} - 0} \right)}^2} + {{\left( {0 - 2{\rm{P}}} \right)}^2}} \right] \le {\rm{f}}_{\rm{y}}^2 \)

\(\frac{1}{2}\left[ {{{\rm{P}}^2} + {{\rm{P}}^2} + 4{{\rm{P}}^2}} \right] \le {\rm{f}}_{\rm{y}}^2 \)

\(3{{\rm{P}}^2} \le {\rm{f}}_{\rm{y}}^2\)

\({\rm{P}} \le \frac{{{{\rm{f}}_{\rm{y}}}}}{{\surd 3}}\)

∴ The maximum magnitude of P before the material reaches the yield stress is \(\frac{{{{\rm{f}}_{\rm{y}}}}}{{\surd 3}}\).

Latest UPSC IES Updates

Last updated on Jul 2, 2025

-> ESE Mains 2025 exam date has been released. As per the schedule, UPSC IES Mains exam 2025 will be conducted on August 10. 

-> UPSC ESE result 2025 has been released. Candidates can download the ESE prelims result PDF from here.

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Theory of Failure Questions

Get Free Access Now
Hot Links: yono teen patti teen patti master teen patti master apk teen patti all games