Find the direction cosines of the vector 7î + 4ĵ - 3k̂.

  1. \(\rm \frac{-7}{\sqrt{74}}\)\(\rm \frac{-4}{\sqrt{74}}\)\(\rm \frac{3}{\sqrt{74}}\)
  2. \(\rm \frac{7}{\sqrt{74}}\)\(\rm \frac{4}{\sqrt{74}}\)\(\rm \frac{-3}{\sqrt{74}}\)
  3. Both options 1 and 2
  4. None of these

Answer (Detailed Solution Below)

Option 3 : Both options 1 and 2
Free
CUET General Awareness (Ancient Indian History - I)
11.6 K Users
10 Questions 50 Marks 12 Mins

Detailed Solution

Download Solution PDF

Concept:

The direction cosines of the vector aî + bĵ + ck̂ are given by α = \(\rm \pm \frac{a}{\sqrt{a^2+b^2+c^2}}\), β = \(\rm \pm \frac{b}{\sqrt{a^2+b^2+c^2}}\) and γ = \(\rm\pm \frac{c}{\sqrt{a^2+b^2+c^2}}\).

Calculation:

For the given vector 7î + 4ĵ - 3k̂, a = 7, b = 4 and c = -3.

The direction cosines of the vector are:

α = \(\rm\pm \frac{7}{\sqrt{7^2+4^2+(-3)^2}}\), β = \(\rm \pm \frac{4}{\sqrt{7^2+4^2+(-3)^2}}\) and γ = \(\rm\pm \frac{-3}{\sqrt{7^2+4^2+(-3)^2}}\)

⇒ α = \(\rm \pm \frac{7}{\sqrt{74}}\), β = \(\rm \pm \frac{4}{\sqrt{74}}\) and γ = \(\rm \frac{\mp 3}{\sqrt{74}}\) 

∴ (α , β , γ ) = (\(\rm \frac{7}{\sqrt{74}}, \rm \frac{4}{\sqrt{74}},\rm \frac{-3}{\sqrt{74}}\)) or (\(\rm \frac{-7}{\sqrt{74}}, \rm \frac{-4}{\sqrt{74}},\rm \frac{3}{\sqrt{74}}\)​)

Latest CUET Updates

Last updated on Jun 17, 2025

-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.

-> The CUET 2025 Postponed for 15 Exam Cities Centres.

-> The CUET 2025 Exam Date was between May 13 to June 3, 2025. 

-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.

-> Prepare Using the Latest CUET UG Mock Test Series.

-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.

More Magnitude and Directions of a Vector Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti club teen patti comfun card online dhani teen patti teen patti octro 3 patti rummy teen patti 100 bonus