एक शाफ्ट पर एक विशेष अनुभाग में 12 kN-m का अधिकतम टॉर्क और 16 kN-m का अधिकतम बंकन आघूर्ण लगाया जाता है। अधिकतम अपरूपण प्रतिबल सिद्धांत (गेस्ट और ट्रेसका सिद्धांत) के अनुसार शाफ्ट का व्यास क्या होगा? यदि साधारण तनाव में प्रत्यास्थ सीमा 160 MPa है।

\(\left[\left(\frac{4}{\pi}\right)^{1 / 3}=1.08\right]\)

This question was previously asked in
BHEL Engineer Trainee Mechanical 24 Aug 2023 Official Paper
View all BHEL Engineer Trainee Papers >
  1. 216 mm
  2. 10.8 mm
  3. 54 mm
  4. 108 mm

Answer (Detailed Solution Below)

Option 4 : 108 mm
Free
BHEL Engineer Trainee Fluid Mechanics Mock Test
1.4 K Users
20 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

सिद्धांत:

अधिकतम अपरूपण प्रतिबल सिद्धांत (गेस्ट या ट्रेसका सिद्धांत) के अनुसार, संयुक्त बंकन और मरोड़ के अधीन एक शाफ्ट में अधिकतम अपरूपण प्रतिबल इस प्रकार दिया गया है:

\( \tau_{max} = \frac{1}{2} \sqrt{\sigma_b^2 + 4\tau^2} \)

सुरक्षा सुनिश्चित करने के लिए, इसे साधारण तनाव में उपज शक्ति के आधे के बराबर सेट किया गया है:

\( \tau_{max} = \frac{\sigma_y}{2} \)

गणना:

दिया गया है:

बंकन आघूर्ण, \(M = 16~kN\cdot m = 16 \times 10^3~N\cdot m\)

टॉर्क, T = \(12~kN\cdot m = 12 \times 10^3~N\cdot m\)

तनाव में प्रत्यास्थ सीमा, \(\sigma_y = 160~MPa = 160 \times 10^6~Pa\)

संयुक्त समतुल्य आघूर्ण की गणना इस प्रकार की जाती है:

\( M_e = \sqrt{M^2 + T^2} = \sqrt{(16)^2 + (12)^2} \times 10^3 = \sqrt{256 + 144} \times 10^3 = 20 \times 10^3~N\cdot m \)

सूत्र का उपयोग करते हुए:

\( \frac{32 M_e}{\pi d^3} = \sigma_y \Rightarrow d^3 = \frac{32 M_e}{\pi \sigma_y} \)

\( d^3 = \frac{32 \cdot 20 \times 10^3}{\pi \cdot 160 \times 10^6} = \frac{640 \times 10^3}{502.65 \times 10^6} = 1.273 \times 10^{-3}~m^3 \)

\( d = (1.273 \times 10^{-3})^{1/3} = 0.108~m = 108~mm \)

Latest BHEL Engineer Trainee Updates

Last updated on Jul 8, 2025

-> The BHEL Cut Off 2025 has been uploaded on July 8, 2025 at the official website 

-> BHEL Engineer Trainee result has been released on July 8. 

-> BHEL Engineer Trainee answer key 2025 has been released at the official website. 

-> The BHEL Engineer Trainee Admit Card 2025 has been released on the official website.

->The BHEL Engineer Trainee Exam 2025 will be conducted on April 11th, 12th and 13th, 2025

-> BHEL Engineer Trainee 2025 Notification has been released on the official website.

-> A total of 150 Vacancies have been announced for various disciplines of Engineering like Mechanical, Electrical, Civil, etc.

-> Interested and eligible candidates can apply from 1st February 2025 to 28th February 2025.

-> The authorities has also released the BHEL Engineer Trainee Pattern 

-> The BHEL Engineer Trainee Selection Process is divided into two stages namely Written Test and Interview.

-> The selected candidates for the Engineer Trainee post will get a salary range between Rs. 60,000 - Rs. 1,80,000.

More Maximum Shear Stress Theory Questions

More Theory of Failure Questions

Get Free Access Now
Hot Links: teen patti pro teen patti app teen patti club