\(\rm \int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \) का मान क्या है?

  1. \(\rm e^x ({1\over x^2})\) + c
  2. \(\rm e^x ({-1\over x^2})\) + c
  3. \(\rm e^x ({1\over x})\) + c
  4. \(\rm e^x ({-1\over x})\) + c

Answer (Detailed Solution Below)

Option 3 : \(\rm e^x ({1\over x})\) + c
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
5.8 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

\(\rm \int e^x \left(f(x)+f'(x)\right)dx \)  = ex f(x) + c

गणना:

माना कि \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \) है। 

माना कि f(x) = \(\rm 1\over x\) है। 

⇒ \(\rm f'(x) = - {1\over x^2}\)

∴ \(\rm I=\int e^x \left(\dfrac{1}{x}- \dfrac{1}{x^2}\right)dx \)\(\rm \int e^x \left(f(x)+f'(x)\right)dx \)

ex f(x) + c

\(\rm e^x ({1\over x})\) ​​+ c

अतः विकल्प (3) सही है। 

Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Definite Integrals Questions

Get Free Access Now
Hot Links: teen patti bliss teen patti earning app teen patti yes