Let A be a nonsingular diagonalizable matrix of order 3 with eigenvalues λ1, λ2, λ3. Then A-1 is diagonalizable if:

This question was previously asked in
DSSSB TGT Maths Male Subject Concerned - 23 Sep 2018 Shift 2
View all DSSSB TGT Papers >
  1. λ1 = 2, λ2 = 1, λ3 = 3
  2. λ1 = 1, λ2 = 2, λ3 = 0
  3. λ1 = 0, λ2 = 0, λ3 = 0
  4. λ1 = 2, λ2 = 0, λ3 = 0

Answer (Detailed Solution Below)

Option 1 : λ1 = 2, λ2 = 1, λ3 = 3
Free
DSSSB TGT Social Science Full Test 1
7.4 K Users
200 Questions 200 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

  • A non-singular matrix is a square matrix whose determinant is not zero.
  • singular matrix is a square matrix whose determinant is zero.
  • The determinant of any square matrix is the multiplication of the eigenvalues of the given matrix.

Calculation: 

It is given that A is a non-singular diagonalizable matrix with eigenvalues λ1, λ2, λ3.

⇒  A-1 = λ1 × λ× λ      ---(1)

Since A is non-singular,

⇒ A-1 ≠ 0      ---(2)

From equation (1) & (2), we get,

∴  λ1, λ2, λ3 can't be zero.

So, from the options, only λ1 = 2, λ2 = 1 and λ3 = 3 satisfies the above condition. 

Hence, λ1 = 2, λ2 = 1, λ3 = 3

Latest DSSSB TGT Updates

Last updated on May 12, 2025

-> The DSSSB TGT 2025 Notification will be released soon. 

-> The selection of the DSSSB TGT is based on the CBT Test which will be held for 200 marks.

-> Candidates can check the DSSSB TGT Previous Year Papers which helps in preparation. Candidates can also check the DSSSB Test Series

More Linear Algebra Questions

Get Free Access Now
Hot Links: teen patti octro 3 patti rummy teen patti classic teen patti pro happy teen patti teen patti wealth