The derivative of \(\rm sin ^{-1}\dfrac{2x}{1+x^2}\) w.r.t \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\) is equal to:

This question was previously asked in
DSSSB TGT Maths Female Subject Concerned - 22 Sep 2018 Shift 2
View all DSSSB TGT Papers >
  1. \(\dfrac{2x}{1-x^2}\)
  2. 1
  3. 0
  4. \(\dfrac{x}{1-x}\)

Answer (Detailed Solution Below)

Option 2 : 1
Free
DSSSB TGT Social Science Full Test 1
7.4 K Users
200 Questions 200 Marks 120 Mins

Detailed Solution

Download Solution PDF

Concept:

\(\dfrac{\partial u}{\partial v} = \dfrac{\partial u}{\partial θ} \times \dfrac{\partial θ}{\partial v}\)

Given:

u = \(\rm sin ^{-1}\dfrac{2x}{1+x^2}\)  And v = \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\)

Calculation:

Let,

x = tan θ 

Then, 

u = \(\rm sin ^{-1}\dfrac{2 \tanθ}{1+\tan^2θ}\) = \(\rm \sin ^{-1}{(\sin2θ)}\)

u = 2θ 

\(\dfrac{\partial u}{\partial θ} = \) 2

And,

v = \(\rm tan ^{-1}\dfrac{2x}{1-x^2}\) = \(\rm \tan ^{-1}\dfrac{2\tanθ}{1-\tan^2θ}\) = \(\rm tan ^{-1}{(\tan2θ)}\)

v = 2θ 

\(\dfrac{\partial v}{\partial θ} = \) 2

After that,

\(\dfrac{\partial u}{\partial v} = \dfrac{\partial u}{\partial θ} \times \dfrac{\partial θ}{\partial v}\)

\(\dfrac{\partial u}{\partial v} = 2 \times \dfrac{1}{2}\)

= 1

Latest DSSSB TGT Updates

Last updated on May 12, 2025

-> The DSSSB TGT 2025 Notification will be released soon. 

-> The selection of the DSSSB TGT is based on the CBT Test which will be held for 200 marks.

-> Candidates can check the DSSSB TGT Previous Year Papers which helps in preparation. Candidates can also check the DSSSB Test Series

More Differential Calculus Questions

Get Free Access Now
Hot Links: real cash teen patti all teen patti lucky teen patti