Question
Download Solution PDFThe value of
\(\rm [\vec{a} + 2\vec{b} - \vec{c}, \vec{a} - \vec{b}, \vec{a}-\vec{b}- \vec{c}]=\) is ?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
Scalar Triple Product:
A scalar triple product is also called a box product.
It is evident that scalar triple product of vectors means the product of three vectors. It means taking the dot product of one of the vectors with the cross product of the remaining two. It is denoted as [a b c ] = a · [b × c]
The product is cyclic in nature ⇔ [ a b c ] = [ b c a ] = [ c a b ]
Properties of the scalar triple product:
In a scalar triple product, dot and cross can be interchanged without altering the order of occurrences of the vectors ⇔ a · [b × c] = [a × b] ∙ c
Three vectors are coplanar if and only if their Scalar Triple Product is zero.
The Scalar Triple Product of three vectors is zero if any two of them are parallel.
Calculation:
\(\rm [\vec{a} + 2\vec{b} - \vec{c}, \vec{a} - \vec{b}, \vec{a}-\vec{b}- \vec{c}]\\=\rm[\vec {a}\;\vec {b}\;\vec {c}]\begin{vmatrix} 1 & 2 & -1\\ 1 & -1 & 0\\ 1 & -1 & -1 \end{vmatrix}\\=[\vec {a}\;\vec{b}\;\vec {c}][1(1-0)-2(-1-0)-1(-1+1)]\\=3[\vec {a}\;\vec{b}\;\vec {c}]\)
Alternate solution:
\(\rm [\vec{a} + 2\vec{b} - \vec{c}, \vec{a} - \vec{b}, \vec{a}-\vec{b}- \vec{c}]\\=(\vec{a} +2\vec{b} - \vec{c}) \cdot [(\vec{a} - \vec{b}) \times (\vec{a}-\vec{b}- \vec{c})]\)
\(\rm =(\vec{a} - 2\vec{b} - \vec{c}) \cdot [\vec{a} \times \vec{a}-\vec{a} \times \vec{b}-\vec{a} \times \vec{c}-\vec{b} \times \vec{a}+\vec{b} \times \vec{b}+\vec{b} \times \vec{c}]\)
As we know, cross product of parallel vectors is zero.
\(\rm =(\vec{a} + 2\vec{b} - \vec{c}) \cdot [0-\vec{a} \times \vec{b}-\vec{a} \times \vec{c}+\vec{a} \times \vec{b}+0+\vec{b} \times \vec{c}]\) \((\because \rm \vec{a} \times \vec{b}= -\vec{b} \times \vec{a})\)
\(\rm =(\vec{a} + 2\vec{b} - \vec{c}) \cdot [-\vec{a} \times \vec{c}+\vec{b} \times \vec{c}]\)
\(\rm =-\vec{a}\cdot[\vec{a} \times \vec{c}] - 2\vec{b}\cdot[\vec{a} \times \vec{c}] + \vec{c} \cdot[\vec{a} \times \vec{c}]+\vec{a}\cdot[\vec{b} \times \vec{c}] + 2\vec{b}\cdot[\vec{b} \times \vec{c}] - \vec{c} \cdot[\vec{b} \times \vec{c}]\)
The Scalar Triple Product of three vectors is zero if any two of them are parallel.
\(\rm =0 - 2\vec{b}\cdot[\vec{a} \times \vec{c}] + 0+\vec{a}\cdot[\vec{b} \times \vec{c}] + 0 - 0\)
\(\rm = 2[\vec {a}\;\vec{b}\;\vec {c}] + [\vec {a}\;\vec{b}\;\vec {c}]\\=3[\vec {a}\;\vec{b}\;\vec {c}]\)
Last updated on Jul 4, 2025
-> The CUET 2025 provisional answer key has been made public on June 17, 2025 on the official website.
-> The CUET 2025 Postponed for 15 Exam Cities Centres.
-> The CUET 2025 Exam Date was between May 13 to June 3, 2025.
-> 12th passed students can appear for the CUET UG exam to get admission to UG courses at various colleges and universities.
-> Prepare Using the Latest CUET UG Mock Test Series.
-> Candidates can check the CUET Previous Year Papers, which helps to understand the difficulty level of the exam and experience the same.