Components of Vectors MCQ Quiz - Objective Question with Answer for Components of Vectors - Download Free PDF
Last updated on Apr 27, 2025
Latest Components of Vectors MCQ Objective Questions
Components of Vectors Question 1:
Consider three vectors \(\rm \vec a, \vec b, \vec c\) Let \(\rm |\vec a|=2, |\vec b|=3\ and \ \vec a=\vec b\times \vec c.\ If\ \alpha\in\left[0,\frac{\pi}{3}\right]\) is the angle between the vectors \(\rm \vec b\ and \ \vec c\), then the minimum value of \(\rm 27|\vec c-\vec a|^2\) is equal to :
Answer (Detailed Solution Below)
Components of Vectors Question 1 Detailed Solution
Calculation:
Given, \(\vec a=\vec b\times \vec c\)
⇒ \(\vec a\) is perpendicular to \(\vec c\)
⇒ \(\vec{\mathrm{a}} \cdot \vec{\mathrm{c}}\) = 0
∴ \(|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|^2=|\overrightarrow{\mathrm{c}}|^2+|\overrightarrow{\mathrm{a}}|^2-2 \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}\)
= \(|\overrightarrow{\mathrm{c}}|^2+4-0\)
Now, \(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}\)
⇒ \(|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|\)
⇒ \(2=3|\overrightarrow{\mathbf{c}}| \sin \alpha\)
⇒ \(|\overrightarrow{\mathrm{c}}|=\frac{2}{3} \operatorname{cosec} \alpha \quad \alpha\in\left[0,\frac{\pi}{3}\right]\)
⇒ \(|\overrightarrow{\mathrm{c}}|_{\min }=\frac{2}{3} \times \frac{2}{\sqrt{3}} \quad \operatorname{cosec} \alpha \in\left[\frac{2}{\sqrt{3}}, \infty\right)\)
⇒ \(27|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|_{\min }^2=27\left(\frac{16}{27}+4\right)=124\)
∴ The minimum value of \(\rm 27|\vec c-\vec a|^2\) is equal to 124.
The correct answer is Option 3.
Components of Vectors Question 2:
For the given vectors \(\overrightarrow{a}=2i-j+2k\) and \(\overrightarrow{b}=-i+j-k\)
I: Sum of the two vectors is i + j + k
II: If \(\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}\), then \(\mid \overrightarrow{c}\mid \) = √2
III: Unit vector in the direction of is \(\overrightarrow{a}+\overrightarrow{b}\) is \(\frac{i}{\sqrt 2 }+\frac{k}{\sqrt 2 }\)
Which of the following statement(s) is/are correct?
Answer (Detailed Solution Below)
Components of Vectors Question 2 Detailed Solution
Concept:
The magnitude of a vector is the length of the vector. The magnitude of the vector p is denoted as \(∣ \overrightarrow{p}∣ = \sqrt{a^2+b^2+c^2}\)
The unit vector in the direction of \(\overrightarrow{p}\) is \(\hat p=\frac{1}{∣ p∣ }\overrightarrow{p}\)
Calculation:
Statement I: Sum of the two vectors is i + j + k
Let \(\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}\). Calculating its value, we have
\(\overrightarrow{c}=(2i-j+2k)+(-i+j-k)\)
= i + k
Statement I is incorrect.
Statement II: If \(\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}\), then \(∣ \overrightarrow{c}∣ \)
\(\overrightarrow{c}=i+k\)
\(∣ \overrightarrow{c}∣ = \sqrt{1^2+0^2+1^2}=\sqrt{1+0+1} =\sqrt2 \)
Statement II is correct.
Statement II: Unit vector in the direction of is \(\overrightarrow{a}+\overrightarrow{b}\) is \(\frac{i}{\sqrt 2 }+\frac{k}{\sqrt 2 }\)
We know that, the unit vector in the direction of \(\overrightarrow{c}\) is \(\hat c=\frac{1}{∣ c∣ }\overrightarrow{c}\)
So, \(\hat c=\frac{1}{\sqrt 2 }{(i+k)}\)
\(\hat c=\frac{i}{\sqrt 2 }+\frac{k}{\sqrt 2 }\)
Statement III is correct.
∴ Statements II and III are correct.
Top Components of Vectors MCQ Objective Questions
Components of Vectors Question 3:
For the given vectors \(\overrightarrow{a}=2i-j+2k\) and \(\overrightarrow{b}=-i+j-k\)
I: Sum of the two vectors is i + j + k
II: If \(\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}\), then \(\mid \overrightarrow{c}\mid \) = √2
III: Unit vector in the direction of is \(\overrightarrow{a}+\overrightarrow{b}\) is \(\frac{i}{\sqrt 2 }+\frac{k}{\sqrt 2 }\)
Which of the following statement(s) is/are correct?
Answer (Detailed Solution Below)
Components of Vectors Question 3 Detailed Solution
Concept:
The magnitude of a vector is the length of the vector. The magnitude of the vector p is denoted as \(∣ \overrightarrow{p}∣ = \sqrt{a^2+b^2+c^2}\)
The unit vector in the direction of \(\overrightarrow{p}\) is \(\hat p=\frac{1}{∣ p∣ }\overrightarrow{p}\)
Calculation:
Statement I: Sum of the two vectors is i + j + k
Let \(\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}\). Calculating its value, we have
\(\overrightarrow{c}=(2i-j+2k)+(-i+j-k)\)
= i + k
Statement I is incorrect.
Statement II: If \(\overrightarrow{c}=\overrightarrow{a}+\overrightarrow{b}\), then \(∣ \overrightarrow{c}∣ \)
\(\overrightarrow{c}=i+k\)
\(∣ \overrightarrow{c}∣ = \sqrt{1^2+0^2+1^2}=\sqrt{1+0+1} =\sqrt2 \)
Statement II is correct.
Statement II: Unit vector in the direction of is \(\overrightarrow{a}+\overrightarrow{b}\) is \(\frac{i}{\sqrt 2 }+\frac{k}{\sqrt 2 }\)
We know that, the unit vector in the direction of \(\overrightarrow{c}\) is \(\hat c=\frac{1}{∣ c∣ }\overrightarrow{c}\)
So, \(\hat c=\frac{1}{\sqrt 2 }{(i+k)}\)
\(\hat c=\frac{i}{\sqrt 2 }+\frac{k}{\sqrt 2 }\)
Statement III is correct.
∴ Statements II and III are correct.
Components of Vectors Question 4:
If 'C' is the midpoint of line segment AB and 'P' is any point not on the line AB, then
Answer (Detailed Solution Below)
Components of Vectors Question 4 Detailed Solution
Concept:
Vector Law of Addition:
Explanation:
Applying the triangle law of addition
\(⇒ \overrightarrow{PA}=\overrightarrow{PC}+\overrightarrow{CA}\) -----(1)
\(⇒ \overrightarrow{PB}=\overrightarrow{PC}+\overrightarrow{CB}\) --------(2)
Adding (1) and (2), We get,
⇒ \(\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PC}+\overrightarrow{CA}+\overrightarrow{PC}+\overrightarrow{CB}\)
⇒ \(\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PC}+\overrightarrow{PC}+(\overrightarrow{CA}+\overrightarrow{CB})\)
Since, \(\overrightarrow{CA}=-\overrightarrow{CB}\)
⇒ \(\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PC}+\overrightarrow{PC}\)
∴ \(\overrightarrow{PA}-\overrightarrow{PC}=\overrightarrow{PC}-\overrightarrow{PB}\)
Components of Vectors Question 5:
Consider two vectors \(\vec{u} = 3\hat{i} - \hat{j}\) and \(\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}\) The angle between them is given by cos-1 \(\frac{\sqrt{5}}{2\sqrt{7}} \) . Let \(\vec{v} = \vec{v}_1 + \vec{v}_2\) where \(\vec{v}\) is parallel to \(\vec{u}\) and \(\vec{v}\) is perpendicular to u. Then the value \(\vec{v}_1|^2 + |\vec{v}_2|^2\) is equal to
Answer (Detailed Solution Below)
Components of Vectors Question 5 Detailed Solution
Calculation:
\(\vec{u} = 3\hat{i} - \hat{j}, \quad \vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}\)
\(\Rightarrow \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} = \cos \theta\)
\(\Rightarrow \frac{5}{\sqrt{10} \sqrt{5 + \lambda^2}} = \frac{\sqrt{5}}{2\sqrt{7}}\)
\(\Rightarrow \lambda^2 = 9 \quad \Rightarrow \lambda = 3 \quad (\because \lambda > 0)\)
\(\vec{v} = \vec{v}_1 + \vec{v}_2\)
\(\Rightarrow |\vec{v}|^2 = |\vec{v}_1|^2 + |\vec{v}_2|^2 + 2 \vec{v}_1 \cdot \vec{v}_2\)
\(\Rightarrow 14 = |\vec{v}_1|^2 + |\vec{v}_2|^2 + 0 \quad (\because \vec{v}_1 \perp \vec{v}_2)\)
\(\Rightarrow |\vec{v}_1|^2 + |\vec{v}_2|^2 = 14\)
Hence, the correct answer is Option 2.
Components of Vectors Question 6:
Consider three vectors \(\rm \vec a, \vec b, \vec c\) Let \(\rm |\vec a|=2, |\vec b|=3\ and \ \vec a=\vec b\times \vec c.\ If\ \alpha\in\left[0,\frac{\pi}{3}\right]\) is the angle between the vectors \(\rm \vec b\ and \ \vec c\), then the minimum value of \(\rm 27|\vec c-\vec a|^2\) is equal to :
Answer (Detailed Solution Below)
Components of Vectors Question 6 Detailed Solution
Calculation:
Given, \(\vec a=\vec b\times \vec c\)
⇒ \(\vec a\) is perpendicular to \(\vec c\)
⇒ \(\vec{\mathrm{a}} \cdot \vec{\mathrm{c}}\) = 0
∴ \(|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|^2=|\overrightarrow{\mathrm{c}}|^2+|\overrightarrow{\mathrm{a}}|^2-2 \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}\)
= \(|\overrightarrow{\mathrm{c}}|^2+4-0\)
Now, \(\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}\)
⇒ \(|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}|\)
⇒ \(2=3|\overrightarrow{\mathbf{c}}| \sin \alpha\)
⇒ \(|\overrightarrow{\mathrm{c}}|=\frac{2}{3} \operatorname{cosec} \alpha \quad \alpha\in\left[0,\frac{\pi}{3}\right]\)
⇒ \(|\overrightarrow{\mathrm{c}}|_{\min }=\frac{2}{3} \times \frac{2}{\sqrt{3}} \quad \operatorname{cosec} \alpha \in\left[\frac{2}{\sqrt{3}}, \infty\right)\)
⇒ \(27|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|_{\min }^2=27\left(\frac{16}{27}+4\right)=124\)
∴ The minimum value of \(\rm 27|\vec c-\vec a|^2\) is equal to 124.
The correct answer is Option 3.