Geometrical applications MCQ Quiz - Objective Question with Answer for Geometrical applications - Download Free PDF

Last updated on Jun 14, 2025

Latest Geometrical applications MCQ Objective Questions

Geometrical applications Question 1:

is a triangle right-angled at B. If A(k,1,1), B(2k,0,2) and are the vertices of the triangle, then what is the value of k?

  1. -3
  2. -1
  3. 1
  4. 3

Answer (Detailed Solution Below)

Option 4 : 3

Geometrical applications Question 1 Detailed Solution

Calculation:

Given,

Points A(k, 1, -1), B(2k, 0, 2), and C(2 + 2k, k, 1) are the vertices of the triangle.

The vectors AB and BC are given by:

\( \overrightarrow{AB} = B - A = (2k - k, 0 - 1, 2 - (-1)) = (k, -1, 3) \)

\( \overrightarrow{BC} = C - B = (2 + 2k - 2k, k - 0, 1 - 2) = (2, k, -1) \)

The dot product of \( \overrightarrow{AB} \) and \( \overrightarrow{BC} \) is:

\( \overrightarrow{AB} \cdot \overrightarrow{BC} = (k)(2) + (-1)(k) + (3)(-1) = 2k - k - 3 = k - 3 \)

Since the vectors are perpendicular, their dot product must be zero:

\( k - 3 = 0 \)

Thus, \( k = 3 \).

∴ The value of k is \(3\).

Hence, the correct answer is Option 4. 

Geometrical applications Question 2:

Let \(ABC\) be a triangle whose circumcentre is at P. If the position vectors of \(A, B, C\) and P are \(\vec {a}, \vec {b}, \vec {c}\) and \(\dfrac {\vec {a} + \vec {b} + \vec {c}}{4}\) respectively, then the position vector of the orthocentre of this triangle, is:

  1. \(-\left (\dfrac {\vec {a} + \vec {b} + \vec {c}}{2}\right )\)
  2. \(\vec {a} + \vec {b} + \vec {c}\)
  3. \(\dfrac {(\vec {a} + \vec {b} + \vec {c})}{2}\)
  4. \(\vec {0}\)
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\dfrac {(\vec {a} + \vec {b} + \vec {c})}{2}\)

Geometrical applications Question 2 Detailed Solution

O is orthocentre and G is centroid and C is circumcentre. G divides OC in \(2:1\) ratio.

Position vector of centriod \(\vec {G} = \dfrac {\vec {a} + \vec {b} + \vec {c}}{3}\)

Position vector of circum center \(\vec {C} = \dfrac {\vec {a} + \vec {b} + \vec {c}}{4}\)

Apply Section Formula,

\(\vec {G} = \dfrac {2\vec {C} + \vec {R}}{3}\)

\(3\vec {G} = 2\vec {C} + \vec {R}\)

\(\vec {R} = 3\vec {G} - 2\vec {C} = (\vec {a} + \vec {b} + \vec {c}) - 2 \left (\dfrac {\vec {a} + \vec {b} + \vec {c}}{4}\right )\)

\(= \dfrac {\vec {a} + \vec {b} + \vec {c}}{2}\)


qImage671b42cf80557cff736ed4f8

Geometrical applications Question 3:

If D, E and F are the mid-points of the sides BC, CA and AB of triangle ABC respectively, then \(\overline{\mathrm{AD}}+\frac{2}{3} \overline{\mathrm{BE}}+\frac{1}{3} \overline{\mathrm{CF}}\) =

  1. \(\frac{1}{2} \overline{\mathrm{AB}}\)
  2. \(\frac{1}{2} \overline{\mathrm{AC}}\)
  3. \(\frac{1}{2} \overline{\mathrm{BC}}\)
  4. \(\frac{2}{3} \overline{\mathrm{AC}}\)
  5. \(\frac{1}{5} \overline{\mathrm{AB}}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{2} \overline{\mathrm{AC}}\)

Geometrical applications Question 3 Detailed Solution

Calculation:

Let the position vector of A, B, C, D, E, F be a̅ , b̅, c̅, d̅ , e̅, f̅ respectively.

∴ \(\overline{\mathrm{d}}=\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}}{2}, \overline{\mathrm{e}}=\frac{\overline{\mathrm{c}}+\overline{\mathrm{a}}}{2}, \overline{\mathrm{f}}=\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{2}\)

Now, \(\overline{\mathrm{AD}}+\frac{2}{3} \overline{\mathrm{BE}}+\frac{1}{3} \overline{\mathrm{CF}}\)

\(\overline{\mathrm{d}}-\overline{\mathrm{a}}+\frac{2}{3}(\overline{\mathrm{e}}-\overline{\mathrm{b}})+\frac{1}{3}(\overline{\mathrm{f}}-\overline{\mathrm{c}})\)

\(\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}}{2}-\overline{\mathrm{a}}+\frac{2}{3}\left(\frac{\overline{\mathrm{c}}+\overline{\mathrm{a}}}{2}-\overline{\mathrm{b}}\right)+\frac{1}{3}\left(\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}}{2}-\overline{\mathrm{c}}\right)\)

\(\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}-2 \overline{\mathrm{a}}}{2}+\frac{\overline{\mathrm{c}}+\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}}{3}+\frac{\overline{\mathrm{a}}+\overline{\mathrm{b}}-2 \overline{\mathrm{c}}}{6}\)

\(\frac{3 \overline{\mathrm{c}}-3 \overline{\mathrm{a}}}{6}\)

\(\frac{3}{6}(\overline{\mathrm{c}}-\overline{\mathrm{a}})\)

\(\frac{1}{2} \overline{\mathrm{AC}}\)

∴ The required answer is \(\frac{1}{2} \overline{\mathrm{AC}}\).

The correct answer is Option 2.

Geometrical applications Question 4:

If the images of the points 𝐴(1, 3),𝐵(3, 1) and 𝐶(2, 4) in the line 𝑥 + 2𝑦 = 4 are D, E and F respectively, then the centroid of the triangle DEF is 

  1. (1/3, 0)
  2. (0, -1/3)
  3. (2, 4)
  4. (2/3, 0)

Answer (Detailed Solution Below)

Option 4 : (2/3, 0)

Geometrical applications Question 4 Detailed Solution

Calculation 

Centroid of triangle ABC = \((\frac{1+3+2}{3} , \frac{3+1+4}{3}) = (2,\frac{8}{3})\)

Image of point \( (2,\frac{8}{3})\) in the line 𝑥 + 2𝑦 = 4

\(\frac{h-2}{1} = \frac{k-\frac{8}{3}}{2} = \frac{-2(1(2)+2(\frac{8}{3})-4)}{(1^{2}+2^{2})}\)

\(\frac{h-2}{1} = \frac{3k-8}{6} = \frac{-2(10)}{15}\)

\(h = 2 - \frac{4}{3} = \frac{2}{3}\)

\(3k = 8 - \frac{4}{3}\times 6 = 0\)

The centroid of the triangle DEF is (2/3, 0)

Hence option 4 is correct

Geometrical applications Question 5:

Let ABC be an equilateral triangle of side a. M and N are two points on the sides AB and AC respectively, such that \(\overline{AN}\)\(K\overline{AC}\) and \(\overline{AB}\) = \(3 \overline{AM}\). If the vectors \(\overline{BN}\) and \(\overline{CM}\) are perpendicular, then K =

  1. \(\frac{1}{5}\)
  2. \(\frac{2}{5}\)
  3. \(-\frac{1}{5}\)
  4. \(-\frac{2}{5}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{1}{5}\)

Geometrical applications Question 5 Detailed Solution

Calculation:

Since ABC is an equilateral triangle, all angles are 60°.

Let \(\vec{AB}\) be along the x-axis and \(\vec{AC}\) at 60° from it.

 

Then \(\vec{AB} = a\hat{i}\) and \(\vec{AC} = a(\cos 60^\circ \hat{i} + \sin 60^\circ \hat{j}) = \frac{a}{2}\hat{i} + \frac{a\sqrt{3}}{2}\hat{j}\)

We have \(\vec{AM} = \frac{1}{3}\vec{AB} = \frac{a}{3}\hat{i}\)

and \(\vec{AN} = K\vec{AC} = \frac{Ka}{2}\hat{i} + \frac{Ka\sqrt{3}}{2}\hat{j}\)

Now, \(\vec{BN} = \vec{AN} - \vec{AB} = (\frac{Ka}{2} - a)\hat{i} + \frac{Ka\sqrt{3}}{2}\hat{j}\)

and \(\vec{CM} = \vec{AM} - \vec{AC} = (\frac{a}{3} - \frac{a}{2})\hat{i} - \frac{a\sqrt{3}}{2}\hat{j} = -\frac{a}{6}\hat{i} - \frac{a\sqrt{3}}{2}\hat{j}\)

Since \(\vec{BN}\) and \(\vec{CM}\) are perpendicular, their dot product is zero.

\(\vec{BN} \cdot \vec{CM} = 0\)

⇒ \((\frac{Ka}{2} - a)(-\frac{a}{6}) + (\frac{Ka\sqrt{3}}{2})(-\frac{a\sqrt{3}}{2}) = 0\)

⇒ \(-\frac{Ka^2}{12} + \frac{a^2}{6} - \frac{3Ka^2}{4} = 0\)

⇒ \(-Ka + 2a - 9Ka = 0\)

⇒ \(10K = 2\)

⇒ \(K = \frac{1}{5}\)

Hence option 1 is correct

Top Geometrical applications MCQ Objective Questions

The area of the triangle where two sides are given by \(\left( {2\bar i - 7\bar j + \bar k} \right)\;\)and \(\left( {4\bar j - 3\bar k} \right)\)

is

  1. 17
  2. \(\frac{{17\sqrt {489} }}{2}\)
  3. 17/4
  4. \(\frac{{\sqrt {389} }}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{{\sqrt {389} }}{2}\)

Geometrical applications Question 6 Detailed Solution

Download Solution PDF

Concept:

If \(\rm \vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\rm \vec a \times \;\vec b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{ \rm a_1}}&{{\rm a_2}}&{{\rm a_3}}\\ {{\rm b_1}}&{{\rm b_2}}&{{\rm b_3}} \end{array}} \right|\)

If \(\rm \vec a\;and\;\vec b\) are the adjacent sides of a triangle, then the area of the triangle is given by: \(\rm \frac{1}{2}\;\left| {\vec a \times \;\vec b} \right|\)

 

Calculation:

Given: two sides of the triangle are  \(\left( {2\bar i - 7\bar j + \bar k} \right)\;\)and \(\left( {4\bar j - 3\bar k} \right)\)

To Find: Area of the triangle

Let sides be \(\rm \vec a\;and\;\vec b\)=  \(\left( {2\bar i - 7\bar j + \bar k} \right)\;\)and \(\left( {4\bar j - 3\bar k} \right)\)

\(\rm \vec{a}\times \vec{b}= \begin{vmatrix} {\hat i}&{\hat j}&{\hat k} \\ 2 & -7 & 1\\ 0 & 4 & -3 \end{vmatrix}\\=\hat i(21-4)-\hat j(-6-0)+\hat k(8-0)\\=17\hat i+6\hat j+8\hat k\)

\(\rm |\vec{a}\times \vec{b}|= \sqrt{17^2+6^2+8^2}= \sqrt{389}\)

Now,

Area of the triangle = \(\rm \frac{1}{2}\;\left| {\vec a \times \;\vec b} \right|\)\(\frac{{\sqrt {389} }}{2}\)

The area of the parallelogram whose diagonals are \(\rm \vec{a}= 3\hat{i} + \hat{j} - 2\hat{k}\) and \(\rm \vec{b}=\hat{i}-3\hat{j}+4\hat{k}\) is:

  1. \(10\sqrt{3}\)
  2. \(5\sqrt{3}\)
  3. \(10\sqrt{2}\)
  4. \(5\sqrt{2}\)

Answer (Detailed Solution Below)

Option 2 : \(5\sqrt{3}\)

Geometrical applications Question 7 Detailed Solution

Download Solution PDF

Concept:

Area of a parallelogram with vectors \(\rm \vec {d_{1}}\) and \(\rm \vec {d_{1}}\) as its diagonals is given by: \(\rm Area=\dfrac{1}{2}\left|\vec{d_1}\times\vec{d_2}\right|\).

Cross Product: For two vectors \(\rm \vec {A}=a_1\hat i+a_2\hat j+a_3\hat k\) and \(\rm \vec {B}=b_1\hat i+b_2\hat j+b_3\hat k\), their cross product is given by:

\(\rm \vec A \times \vec B=\begin{vmatrix} \rm \hat i & \rm \hat j & \rm \hat k\\ \rm a_1& \rm a_2 & \rm a_3\\ \rm b_1 & \rm b_2 & \rm b_3\end{vmatrix}=(a_2b_3-a_3b_2)\hat i+(a_3b_1-a_1b_3)\hat j+(a_1b_2-a_2b_1)\hat k\).

The magnitude \(\rm |\vec A|\) of a vector \(\rm \vec {A}=a_1\hat i+a_2\hat j+a_3\hat k\) is given by: \(\rm |\vec A|=\sqrt{a_1^2+a_2^2+a_3^2}\).

 

Calculation:

The given diagonals of the parallelogram are \(\rm \vec{a}= 3\hat{i} + \hat{j} - 2\hat{k}\) and \(\rm \vec{b}=\hat{i}-3\hat{j}+4\hat{k}\).

Using the formula for the area of a parallelogram whose diagonals \(\rm \vec {a}\) and \(\rm \vec {b}\) are given, we get:

\(\rm Area=\dfrac{1}{2}\left|\vec a\times\vec b\right|=\dfrac{1}{2}\left|(a_2b_3-a_3b_2)\hat i+(a_3b_1-a_1b_3)\hat j+(a_1b_2-a_2b_1)\hat k\right|\)

\(\rm \dfrac{1}{2}\sqrt{(a_2b_3-a_3b_2)^2+(a_3b_1-a_1b_3)^2+(a_1b_2-a_2b_1)^2}\)

\(\rm \dfrac{1}{2}\sqrt{[(1)(4)-(-2)(-3)]^2+[(-2)(1)-(3)(4)]^2+[(3)(-3)-(1)(1)]^2}\)

\(\rm \dfrac{1}{2}\sqrt{(4-6)^2+(-2-12)^2+(-9-1)^2}\)

\(\rm \dfrac{1}{2}\sqrt{4+196+100}\)

\(\rm \dfrac{1}{2}\sqrt{300}\)

\(5\sqrt{3}\).

 

Additional Information

Area of a parallelogram with vectors \(\rm \vec {a}\) and \(\rm \vec {b}\) as its sides is given by: \(\rm Area=|\vec{a}\times\vec{b}|\).

For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:

  • Dot Product is defined as: \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).
  • Cross Product is defined as: \(\rm \vec A\times \vec B=\hat n|\vec A||\vec B|\sin \theta\), where \(\rm \hat n\) is the unit vector perpendicular to the plane containing \(\rm \vec A\) and \(\rm \vec B\).

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin. What is \(\overrightarrow {{\rm{OA}}} + \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{OC}}} + \overrightarrow {{\rm{OD}}}\) equal to?

  1. \(2\;\overrightarrow {OP} \)
  2. \(4\;\overrightarrow {OP}\)
  3. \(6\;\overrightarrow {OP} \)
  4. \(8\;\overrightarrow {OP} \)

Answer (Detailed Solution Below)

Option 2 : \(4\;\overrightarrow {OP}\)

Geometrical applications Question 8 Detailed Solution

Download Solution PDF

Concept:

  • Diagonals of a parallelogram bisect each other.


Calculation:

Since, the diagonals of a parallelogram bisect each other. Therefore, P is the middle point of AC and BD both.

F1 A.K Madhu 26.06.20 D1

\(\Rightarrow \frac{{\overrightarrow {{\rm{OA}}} + \overrightarrow {{\rm{OC}}} }}{2} = \overrightarrow {{\rm{OP}}} \) 

\(\therefore \overrightarrow {{\rm{OA}}} + \overrightarrow {{\rm{OC}}} = 2 \times \overrightarrow {{\rm{OP}}} \)         …. (1)

Now,

\( \Rightarrow \frac{{\overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{OD}}} }}{2} = \overrightarrow {{\rm{OP}}} \)  

\(\therefore \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{OD}}} = 2 \times \overrightarrow {{\rm{OP}}} \)         …. (2)

Adding equation 1 and 2, we get

\(\overrightarrow {{\rm{OA}}} + \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{OC}}} + \overrightarrow {{\rm{OD}}} = 4{\rm{\;}}\overrightarrow {{\rm{OP}}} {\rm{\;}}\) 

If the position vector of a point P with respect to origin O is î + 3ĵ - 2k̂ and that of a point Q is 3î + ĵ - 2k̂, then what is the position vector of the bisector of the angle POQ? 

  1. î - ĵ - k̂ 
  2. î + ĵ - k̂ 
  3. î + ĵ + k̂ 
  4. None of the above

Answer (Detailed Solution Below)

Option 4 : None of the above

Geometrical applications Question 9 Detailed Solution

Download Solution PDF

Concept:

 A triangle ABC is said to be an isosceles triangle if triangle ABC must have two sides of equal length.

Calculations:

Given, the position vector of a point P with respect to origin O is î + 3ĵ - 2k̂ and that of a point Q is 3î + ĵ - 2k̂.

\(\rm \bar {OP} \) = î + 3ĵ - 2k̂ and  \(\rm \bar {OQ}\) = 3î + ĵ - 2k̂.

⇒ |OP| = \(\rm \sqrt {1+9 + 4} = \sqrt {14}\)

⇒ |OQ| = \(\rm \sqrt {9 + 1+ 4} = \sqrt {14}\)

Here, |OP| = |OQ|

\(\rm \triangle POQ\) is isoscale.

The position vector of the bisector of the angle POQ = \(\rm \dfrac 1 2 (OP + OQ)\)

⇒The position vector of the bisector of the angle POQ = \(\rm \dfrac 1 2 [(î + 3ĵ - 2k̂) + (3î + ĵ - 2k̂)]\)

⇒The position vector of the bisector of the angle POQ = \(\rm \dfrac 1 2 (4î + 4ĵ - 4k̂) \)

⇒The position vector of the bisector of the angle POQ = \(\rm 2î + 2ĵ - 2k̂\)

What is the area of the parallelogram having diagonals 3î + ĵ - 2k̂ and î - 3ĵ + 4k̂?

  1. 5√5 square units 
  2. 4√5 square units
  3. 5√3 square units
  4. 15√2 square units

Answer (Detailed Solution Below)

Option 3 : 5√3 square units

Geometrical applications Question 10 Detailed Solution

Download Solution PDF

Concept:

Considering a parallelogram ABCD, AC and BD are the diagonals that bisect each other at O.

F1 A.K Madhu 16.05.20 D6

We know that, the diagonal of the parallelogram bisects the parallelogram into two triangles of equal area.

Area of the parallelogram = 2 × area of ∆BCD.

In ∆BCD,

Base = BD and Height = CE = OC × sin θ = ½ × AC × sin θ

Area of triangle BCD = ½ × base × height = 1/2 × |\(\overrightarrow {BD} \)| × |\(\frac{{\overrightarrow {AC} }}{2}\) sin θ|

So, area of the parallelogram ABCD = |\(\overrightarrow {BD} \)| × |\(\frac{{\overrightarrow {AC} }}{2}\) sin θ | = 1/2 × |\(\overrightarrow {BD} \times \overrightarrow {AC} \)|

Calculation:

Given:

Let us assume the diagonals AC and BD as,

\(\overrightarrow {AC} \) = 3î + ĵ - 2k̂

\(\overrightarrow {BD}\) = î - 3ĵ + 4k̂

To find: Area of the parallelogram?

Area of the parallelogram = ½ × |\(\overrightarrow {BD} \times \overrightarrow {AC} \)|

= ½ × \(\left| {\begin{array}{*{20}{c}} i&j&k\\ 3&1&-2\\ 1&-3&4 \end{array}} \right|\)

= ½ × |î {4 – 6} ĵ – {12 – (-2)} + k̂ {-9 – 1}|

= ½ × |-2î - 14ĵ – 10 k̂|

= ½ × \(\sqrt {{2^2} + {{14}^2} + {{10}^2}} \)

= ½ × √(4 + 196 + 100)

= ½ × √(300)

= ½ × 10√3

= 5√3

If the vectors \(\rm 3\hat{i} - 8\hat{j} + 5\hat{k}, \hat{i} - λ\hat{j} + 2\hat{k} \;and\; 2\hat{i} + 3\hat{j} + 3\hat{k}\) form a triangle then λ is equal to?

  1. 11
  2. 5
  3. 3
  4. 12

Answer (Detailed Solution Below)

Option 1 : 11

Geometrical applications Question 11 Detailed Solution

Download Solution PDF

Concept:

 

Triangle Law of Vector Addition: Triangle law of vector addition states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.

F1 A.K Madhu 26.06.20 D2

\(⇒ {\rm{\vec R}} = {\rm{\vec A}} + {\rm{\vec B}}\)

Calculation:

Given vectors are \(\rm 3\hat{i} - 8\hat{j} + 5\hat{k}, \hat{i} - λ\hat{j} + 2\hat{k} \;and\; 2\hat{i} + 3\hat{j} + 3\hat{k}\)

Using triangle law of vector addition,

\(\rm ⇒ 3\hat{i} - 8\hat{j} + 5\hat{k} = (\hat{i} - λ\hat{j} + 2\hat{k}) + (2\hat{i} + 3\hat{j} + 3\hat{k})\)

\(\rm ⇒ 3\hat{i} - 8\hat{j} + 5\hat{k} = 3\hat{i} + (- λ+3)\hat{j} + 5\hat{k} \)

Comparing the coefficient of \(\rm \vec {j}\), we get

⇒ -8 = -λ + 3

⇒ λ = 3 + 8

∴ λ = 11

What is the area of ΔOAB, where O is the origin, \(\overrightarrow {OA} = \;3\hat i - \hat j + \hat k\;and\;\overrightarrow {OB} = \;2\hat i + \hat j - 3\hat k\)

  1. \(\frac{{5\sqrt 6 }}{{11}}\;sq\;units\)
  2. \(\frac{{5\sqrt 6 }}{7}\;sq\;units\)
  3. \(\frac{{5\sqrt 6 }}{3}\;sq\;units\)
  4. \(\frac{{5\sqrt 6 }}{2}\;sq\;units\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{{5\sqrt 6 }}{2}\;sq\;units\)

Geometrical applications Question 12 Detailed Solution

Download Solution PDF

Concept:

I. If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \times \;\vec b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right|\)

II. If \(\vec a\;and\;\vec b\) are the adjacent sides of a triangle, then area of triangle is given by: \(\frac{1}{2}\;\left| {\vec a \times \;\vec b} \right|\)

Calculation:

Given: In ΔOAB, where O is the origin, \(\overrightarrow {OA} = \;3\hat i - \hat j + \hat k\;and\;\overrightarrow {OB} = \;2\hat i + \hat j - 3\hat k\)

\(\overrightarrow {OA} \times \;\overrightarrow {OB} = \;\left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ 3&{ - 1}&1\\ 2&1&{ - 3} \end{array}} \right| = 2\;\hat i + 11\;\hat j + 5\;\hat k\)

\( \Rightarrow \left| {\overrightarrow {OA} \times \;\overrightarrow {OB} } \right| = \sqrt {{2^2} + {{11}^2} + {5^2}} = 5\sqrt 6 \)

As we know that, If \(\vec a\;and\;\vec b\) are the adjacent sides of a triangle, then area of triangle is given by: \(\frac{1}{2}\;\left| {\vec a \times \;\vec b} \right|\)

\( \Rightarrow \frac{1}{2}\left| {\overrightarrow {OA} \times \;\overrightarrow {OB} } \right| = \frac{1}{2} \times \;5\sqrt 6 = \frac{{5\sqrt 6 }}{2}\;sq\;units\)

What is the area of the triangle with vertices (0,2,2), (2,0,-1) and (3,4,0)? 

  1. 15/2 sq units
  2. 7/3 sq units
  3. 15 sq units
  4. 1/5 sq units

Answer (Detailed Solution Below)

Option 1 : 15/2 sq units

Geometrical applications Question 13 Detailed Solution

Download Solution PDF

Concept:

Area of triangle when two vectors are given:

\(\rm \frac12 \times |\vec {AB} \times \vec {AC}| \)

Cross product:

\(\begin{array}{l} \rm \vec{a}=x_{1} \hat{1}+y_{1} \hat{j}+z_{1} \hat{k}\\ \rm \vec{b}=x_{2} \hat{1}+y_{2} \hat{j}+z_{2} \hat{k} \\ \rm \vec{a} \times \vec{b}=\left|\begin{array}{ccc} \rm \hat{i} &\rm j &\rm \hat{k} \\ \rm x_{1} &\rm y_{1} & \rm z_{1} \\ \rm x_{2} & \rm y_{2} &\rm z_{2} \rm \end{array}\right| \end{array}\)

 

Calculation:

Here, Let A = (0,2,2), B = (2,0,-1) and C =(3,4,0) 

AB = (2-0, 0-2, -1-2) = (2, -2, -3) and

AC = (3-0, 4-2, 0-2) = (3, 2, -2)

Area of triangle = \(\rm \frac12 \times |\vec {AB} \times \vec {AC}| \)

 \(\begin{array}{l} =\rm \frac{1}{2}\left|\begin{array}{ccc} \rm \hat i &\rm \hat j & \rm \hat k \\ 2 & -2 & -3 \\ 3 & 2 & -2 \end{array}\right| \\ =\frac{1}{2}|[\rm \hat i(4+6)+ \rm \hat j(-4+9)+ \rm \hat k(4+6)]| \end{array}\)

=1/2(10 i + 5 j + 10 k)

= 1/2 √(100 + 25 + 100)

= 15/2 sq unit

Hence, option (1) is correct.

Let \(\vec \alpha = \left( {\lambda - 2} \right){\rm{\vec a}} + {\rm{\vec b\;and\;}}\vec \beta = \left( {4\lambda - 2} \right)\vec a + 3\vec b\) be two given vectors where vectors \({\rm{\vec a\;and\;\vec b}}\) are non-collinear. The value of λ for which vectors \(\vec \alpha {\rm{\;and\;}}\vec \beta \) are collinear is:

  1. -4
  2. -3
  3. 4
  4. 3

Answer (Detailed Solution Below)

Option 1 : -4

Geometrical applications Question 14 Detailed Solution

Download Solution PDF

From question, the vectors \({\rm{\vec a\;and\;\vec b}}\) are non-collinear.

Then, we can write,

\(\Rightarrow {\rm{\vec a}} \neq \lambda {\rm{\vec b}}\)

for some non-zero scalar λ.

From question,

\(\vec \alpha = \left( {\lambda - 2} \right){\rm{\vec a}} + {\rm{\vec b}}\)

\(\vec \beta = \left( {4\lambda - 2} \right)\vec a + 3\vec b\)

So, we can write,

\(\vec \alpha = k\vec \beta \) for some k ∈ R -{0}

On substituting the values,

\(\Rightarrow \left( {\lambda - 2} \right){\rm{\vec a}} + {\rm{\vec b}} = k\left[ {\left( {4\lambda - 2} \right)\vec a + 3\vec b} \right]\)

\(\Rightarrow \left[ {\left( {\lambda - 2} \right) - k\left( {4\lambda - 2} \right)} \right]{\rm{a}} + \left( {1 - 3k} \right){\rm{b}} = 0\)

From question, as \({\rm{\vec a\;and\;\vec b}}\) are non-collinear, therefore they are linearly independent.

⇒ (λ - 2) - k(4λ - 2) = 0 and (1 - 3k) = 0

Now,

⇒ 1 = 3k

\(\therefore k = \frac{1}{3}\)

On substituting value of ‘k’ in another obtained equation,

\(\Rightarrow \left( {\lambda - 2} \right) - \frac{1}{3}\left( {4\lambda - 2} \right) = 0\)

⇒ 3λ - 6 = 4λ - 2

∴ λ = -4

If \(\overrightarrow{AC}=2\hat{i}+\hat{j}+\hat{k}\) and \(\overrightarrow{BD}=-\hat{i}+3\hat{j}+2\hat{k}\) then the area of the quadrilateral ABCD is

  1. \(\dfrac{5}{2}\sqrt{3}\)
  2. \(5\sqrt{3}\)
  3. \(\dfrac{15}{2}\sqrt{3}\)
  4. \(10\sqrt{3}\)

Answer (Detailed Solution Below)

Option 1 : \(\dfrac{5}{2}\sqrt{3}\)

Geometrical applications Question 15 Detailed Solution

Download Solution PDF

Concept:

The area of the quadrilateral ABCD = \(\rm \dfrac 12 |\vec {AC} \times \vec {BD}|\)  , where \(\rm \vec {AC} \;\; \text {and }\;\; \vec {BD}\) are diagonals.

Calculations:

Let \(\overrightarrow{AC}=2\hat{i}+\hat{j}+\hat{k}\)    and  \(\overrightarrow{BD}=-\hat{i}+3\hat{j}+2\hat{k}\) are the diagonal of the quadrilateral ABCD.

The area of the quadrilateral ABCD = \(\rm \dfrac 12 |\vec {AC} \times \vec {BD}|\) ....(1) 

\(\rm (\vec {AC} \times \vec {BD}) =\)\(\begin{vmatrix} \vec i&\vec j & \vec k \\ 2&1 &1 \\ -1&3 &2 \end{vmatrix}\)

\(\rm (\vec {AC} \times \vec {BD}) =\)\(\rm -\vec i - 5\vec j + 7 \vec k\)

\(\rm |\vec {AC} \times \vec {BD}| = \sqrt {(-1)^2+(-5)^2+(7)^2}\)

\(\rm |\vec {AC} \times \vec {BD}| = \sqrt {75} = 5 \sqrt 3\)

From equation (1), we have

The area of the quadrilateral ABCD = \(\rm \dfrac{5\sqrt3}{2}\)

Get Free Access Now
Hot Links: teen patti customer care number teen patti master 2024 teen patti joy 51 bonus teen patti - 3patti cards game