Trigonometric elements MCQ Quiz in मल्याळम - Objective Question with Answer for Trigonometric elements - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 6, 2025

നേടുക Trigonometric elements ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Trigonometric elements MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Trigonometric elements MCQ Objective Questions

Top Trigonometric elements MCQ Objective Questions

Trigonometric elements Question 1:

Let \(\rm \Delta=\begin{vmatrix}\sin \theta \cos \phi&\sin \theta \sin \phi&\cos \theta\\\ \cos \theta \cos \phi&\cos \theta \sin \phi&-\sin \theta\\\ -\sin \theta \sin \phi&\sin \theta\cos\phi&0\end{vmatrix}\). Then

  1. Δ s independent of θ 
  2. Δ is independent of φ
  3. Δ is a constant
  4. \(\rm \left(\frac{d\Delta}{d\theta}\right)_{\theta=\pi/2}=0\)

Answer (Detailed Solution Below)

Option :

Trigonometric elements Question 1 Detailed Solution

Calculation

\(\Delta = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \theta \sin \phi & \sin \theta \cos \phi & 0 \end{bmatrix}\)

Expanding through R₃ we get

\(= -\sin \theta \sin \phi (-\sin^2 \theta \sin \phi - \cos^2 \theta \sin \phi) - \sin \theta \cos \phi (-\sin^2 \theta \cos \phi - \cos^2 \theta \cos \phi)\)

\(= \sin \theta \sin^2 \phi (\sin^2 \theta + \cos^2 \theta) + \sin \theta \cos^2 \phi (\sin^2 \theta + \cos^2 \theta)\)

\(= \sin \theta \sin^2 \phi + \sin \theta \cos^2 \phi = \sin \theta (\sin^2 \phi + \cos^2 \phi)\)

\(= \sin \theta\)

Independent of \(\phi\)

Also,

\(\frac{d\Delta}{d\theta} = \cos \theta\)

Therefore,

\(\frac{d\Delta}{d\theta}\) at \(\theta = \frac{\pi}{2}\) \(= \cos(\frac{\pi}{2}) = 0\)

Hence option 2 and 4 are correct

Trigonometric elements Question 2:

Let \(A=\left(\begin{array}{cc} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{array}\right)\) and A + AT - 2I = 0, where AT is the transpose of A and I is the identity matrix. The value of 𝜃 (in degrees) is ________.

Answer (Detailed Solution Below) 90

Trigonometric elements Question 2 Detailed Solution

The correct option is: 90 

Explanation: We start with the matrix ( A ) and the given equation ( A + AT - 2I = 0 ).

Given: \([ A = \begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} ]\)

  • First, determine the transpose of ( A ):\( [ A^T = \begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} ]\)
  • Next, add ( A ) and ( AT ): [ A + AT = \(\begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} + \begin{pmatrix} \sin θ & \cos θ \ \cos θ & \sin θ \end{pmatrix} = \begin{pmatrix} 2\sin θ & 2\cos θ \ 2\cos θ & 2\sin θ \end{pmatrix} ]\)
  • Now, subtract ( 2I ) from ( A + AT ): \([ 2I = \begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} ] [ A + A^T - 2I = \begin{pmatrix} 2\sin θ & 2\cos θ \ 2\cos θ & 2\sin θ \end{pmatrix} - \begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2\sin θ - 2 & 2\cos θ \ 2\cos θ & 2\sin θ - 2 \end{pmatrix} ]\)
  • Set ( A + AT - 2I ) equal to the zero matrix: \([ \begin{pmatrix} 2\sin θ - 2 & 2\cos θ \ 2\cos θ & 2\sin θ - 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} ]\)
  • This results in the following equations: \([ 2\sin θ - 2 = 0 ] [ 2\cos θ = 0 ]\)
  • Solving these gives: \([ 2\sin θ - 2 = 0 \rightarrow \sin θ = 1 ] [ 2\cos θ = 0 \rightarrow \cos θ = 0 ]\)
  • The only angle that satisfies both equations is \((θ = 90^\circ).\)

Thus, the value of (θ) is 90.

Get Free Access Now
Hot Links: teen patti 50 bonus teen patti go teen patti jodi teen patti glory teen patti wala game