Types of Vectors MCQ Quiz in मल्याळम - Objective Question with Answer for Types of Vectors - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Apr 6, 2025
Latest Types of Vectors MCQ Objective Questions
Top Types of Vectors MCQ Objective Questions
Types of Vectors Question 1:
If\(\left| {\overrightarrow a } \right|\) = \(\left| {\overrightarrow b } \right|\) = \(\left| {\overrightarrow c } \right|\) and \(\overrightarrow a \, + \,\overrightarrow b \, = \,\,\overrightarrow c \), then angle between \(\overrightarrow a \) and \(\overrightarrow b \) is -
Answer (Detailed Solution Below)
Types of Vectors Question 1 Detailed Solution
We Have,
If, \(\left| {\overrightarrow a } \right|\) = \(\left| {\overrightarrow b } \right|\) = \(\left| {\overrightarrow c } \right|\)
⇒ a = b = c .... (1)
And,
\(\overrightarrow a \, + \,\overrightarrow b \, = \,\,\overrightarrow c \) .... (2)
Using the concept of, Parallelogram Law of Vector Addition: It is used to add two vector quantities.
\(\overrightarrow A \, + \,\overrightarrow B \, = \,\,\overrightarrow R\)
R2 = A2 + B2 +2AB cos θ
From equation (2),
c2 = a2 + b2 +2ab cos θ
Since,
a = b = c
Hence,
a2 = a2 + a2 +2a2 cos θ
or, a2 = a2 (1 + 1 +2cos θ)
or, 1 = 2 + 2 cos θ
or, 2 cos θ = -1
or, cos θ = (-0.5)
Hence, θ = cos-1 (0.5) = 120° = \(\frac{{2\pi }}{3}\)
Types of Vectors Question 2:
If vectors \(\rm \vec a = \vec b\) then a3 is ?
Where \(\rm \vec a = 5\hat i - 3\hat j +a_3\hat k\) and \(\rm \vec b =\rm \vec 5\hat i - 3\hat j -2\hat k\)
Answer (Detailed Solution Below)
Types of Vectors Question 2 Detailed Solution
Concept:
Equal Vectors
Two or more vectors are said to be equal when their magnitude is equal and also their direction is the same.
Calculation:
Given: \(\rm \vec a = 5\hat i - 3\hat j +a_3\hat k\) and \(\rm \vec b =\rm \vec 5\hat i - 3\hat j -2\hat k\)
\(\rm \vec a = \vec b\)
\(\rm 5\hat i - 3\hat j +a_3\hat k =\rm \vec 5\hat i - 3\hat j -2\hat k\)
∴ a3 = - 2
Types of Vectors Question 3:
If \(\overrightarrow{a}= 2\hat{i}+2\hat{j}+3\hat{k}\) , \(\overrightarrow{b}= -\hat{i}+2\hat{j}+\hat{k}\) and \(\overrightarrow{c}= 3\hat{i}+\hat{j}\) are such that \(\overrightarrow{a}+λ \overrightarrow{b}\) is perpendicular to \(\overrightarrow{c}\) , then find the value of λ.
Answer (Detailed Solution Below)
Types of Vectors Question 3 Detailed Solution
Concept:
Two vectors \(\overrightarrow{A}\) and \(\overrightarrow{B}\) are perpendicular if and only if, their dot product is equal to zero.
\(\overrightarrow{A}.\overrightarrow{B}=0\)
Solution:
Given: \(\overrightarrow{a}= 2\hat{i}+2\hat{j}+3\hat{k}\) , \(\overrightarrow{b}= -\hat{i}+2\hat{j}+\hat{k}\) and \(\overrightarrow{c}= 3\hat{i}+\hat{j}\)
Then, \(\overrightarrow{a}+λ \overrightarrow{b} \) \(= (2\hat{i}+2\hat{j}+3\hat{k})+λ (-\hat{i}+2\hat{j}+\hat{k})\)
\(= (2-λ )\hat{i}+(2+2λ )\hat{j}+(3+λ )\hat{k}\)
Given that, \(\overrightarrow{a}+λ \overrightarrow{b}\) is perpendicular to \(\overrightarrow{c}\)
Then, \((\overrightarrow{a}+λ \overrightarrow{b}).\overrightarrow{c}=0\)
⇒ \([(2-λ )\hat{i}+(2+2λ )\hat{j}+(3+λ )\hat{k}].(3\hat{i}+\hat{j}) =0 \)
⇒ 3(2 - λ ) + (2 + 2λ ) = 0
⇒ 6 - 3λ + 2 + 2λ = 0
⇒ 8 - λ = 0
⇒ λ = 8
∴ The correct option is (2)
Types of Vectors Question 4:
If \(\vec{a}\ =\ \hat{i}\ +\ 2\hat{j}\ +\ 2\hat{k}\) and \(\vec{b}\ =\ 3\hat{i}\ +\ 5\hat{j}\ +\ \sqrt{2}\hat{k}\) then a vector in the direction of \(\vec{a}\) and having magnitude as \(|\vec b|\) is
Answer (Detailed Solution Below)
Types of Vectors Question 4 Detailed Solution
Concept:
Vector \(\vec{r}\) of magnitude |p| in the direction of \(\vec{q}\) is given by
\(\vec{r}\ =\ |p|.\hat{q}\ =\ |p|.\frac{\hat{q}}{|q|}\)
If \(\vec{a} = {a_1}\hat{i} \ + \ {a_2}\hat{j} \ + \ {a_3}\hat{k}\) then magnitude of \(\vec{a}\) is written as
\(|\vec{a}|\ =\ \sqrt{a_1^2\ +\ a_2^2\ +\ a_3^2}\)
Calculation:
Let the required vector is \(\vec{c}\)
\(\vec{a}\ =\ \hat{i}\ +\ 2\hat{j}\ +\ 2\hat{k}\)
\(\vec{b}\ =\ 3\hat{i}\ +\ 5\hat{j}\ +\ \sqrt{2}\hat{k}\)
A vector in the direction a and magnitude |b| is given by
\(\vec{c}\ =\ |b|.\hat{a}\ =\ |b|.\frac{\hat{a}}{|a|}\)
\(\vec{c}\ =\ \sqrt{3^2\ +\ 5^2\ +\ (\sqrt{2})^2}.\frac{\hat{\hat{i}\ +\ 2\hat{j}\ +\ 2\hat{k}}}{\sqrt{1^2\ +\ 2^2\ +\ 2^2}}\)
\(\vec{c}\ =\ 6.\frac{\hat{\hat{i}\ +\ 2\hat{j}\ +\ 2\hat{k}}}{3}\)
\(\vec{c}\ =\ 2({\hat{\hat{i}\ +\ 2\hat{j}\ +\ 2\hat{k}}})\)
Hence, option 4 is correct.
Types of Vectors Question 5:
The unit vector which are perpendicular to both the vectors \(\rm \hat{i}-2\hat{j}+3\hat{k} \) and \(\rm \hat{2i}+\hat{3j}-\hat{k} \) are ,
Answer (Detailed Solution Below)
Types of Vectors Question 5 Detailed Solution
Concept:
If \(\rm\overrightarrow{c}\) perpendicular to both the vectors \(\rm\overrightarrow{a}\) and \(\rm\overrightarrow{b}\) then \(\rm \vec c = \vec a \times \vec b\)
Unit vector, \(\rm \hat{c}= \frac{\overrightarrow{c}}{\left | \overrightarrow{c} \right |}\)
Calculation :
Here the given vectors are, \(\overrightarrow{a}=\rm \hat{i}-2\hat{j}+3\hat{k}\) and \(\overrightarrow{b}=\rm 2\hat{i}+3\hat{j}-\hat{k}\) ,
Let, vector \(\rm\overrightarrow{c}\) are perpendicular to both the vectors,
So, \(\rm \overrightarrow{c}= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ 1 & -2 & 3\\ 2& 3 & -1 \end{vmatrix}\)
⇒ \(\rm \overrightarrow{c}= \hat{i}(2-9)-\hat{j}(-1-6)+\hat{k}(3+4)\)
⇒ \(\rm \overrightarrow{c}= -7\hat{i}+7\hat{j}+7\hat{k}\)
∴ \(\rm \left | \overrightarrow{c} \right | = \sqrt{(-7)^{2}+7^{2}+7^{2}}\) = \(7\sqrt{3}\)
Hence the unit vector perpendicular to both the vectors are,
\(\rm \hat{c}= \frac{\overrightarrow{c}}{\left | \overrightarrow{c} \right |}\) = \(\rm\frac{-7\hat{i}+7\hat{j}+7\hat{k}}{7\sqrt{3}}\)
⇒ \(\rm \hat{c}= \frac{1}{\sqrt{3}}\left ( -\hat{i}+\hat{j}+\hat{k} \right )\)
The correct option is 1.
Types of Vectors Question 6:
If \(\rm \vec a\) is a non-zero vector of modulus a and λ is a non-zero scalar and λ\(\rm \vec a\) is a unit vector then
Answer (Detailed Solution Below)
Types of Vectors Question 6 Detailed Solution
Calculation:
\(\rm\overrightarrow{a}\) is a non-zero vector of modulus a and λ is a non-zero scalar and \(\rm\lambda\overrightarrow{a}\) is a unit vector i.e. \(\rm|\lambda \overrightarrow{a}|\) = 1
⇒ |λ|\(\rm|\overrightarrow{a}|\) = 1 (∵ |mn| = |m|⋅|n|)
⇒ |λ|⋅a = 1 (∵ \(\rm|\overrightarrow{a}|\) = a(given))
⇒ a = \(\frac{1}{|\lambda|}\)
The correct answer is option "3"
Types of Vectors Question 7:
For what value of m are the vector 2î - 3ĵ + 4k̂, î + 2ĵ - k̂ and mî - ĵ + 2k̂ are coplanar ?
Answer (Detailed Solution Below)
Types of Vectors Question 7 Detailed Solution
Concept:
If three vectors a, b and c are coplanar vectors, then
their scalar triple product is zero.
That is, a.(b × c) = 0
Calculation:
Given,
The vectors 2î - 3ĵ + 4k̂, î + 2ĵ - k̂ and mî - ĵ + 2k̂ are coplanar
⇒ (2î - 3ĵ + 4k̂).[(î + 2ĵ - k̂) × (mî - ĵ + 2k̂)] = 0
⇒ (2î - 3ĵ + 4k̂).[(4 - 1)î - (2 + m)ĵ + (-1 - 2m) k̂] = 0
⇒ (2î - 3ĵ + 4k̂).(3î - (2 + m)ĵ - (1 + 2m) k̂) = 0
⇒ (2)(3) + (-3)(-(2 + m)) + (4)(-(1 + 2m)) = 0
⇒ 6 + 6 + 3m - 4 - 8m = 0
⇒ 8 - 5m = 0
⇒ m = 8/5
∴ The correct answer is option (4).
Types of Vectors Question 8:
If \(\vec a = {a_1}\hat i + 3\hat j + {a_3}\hat k\;and\;\vec b = 2\hat i + {b_2}\hat j + \;\hat k\) are two vectors such that \(\vec a = \vec b\) then which of the following is true ?
Answer (Detailed Solution Below)
Types of Vectors Question 8 Detailed Solution
CONCEPT:
Two vectors \(\vec a \ and \ \vec b\)are said to be equal if and only if they have same direction and same magnitude.
CALCULATION:
Given: \(\vec a = {a_1}\hat i + 3\hat j + {a_3}\hat k\;and\;\vec b = 2\hat i + {b_2}\hat j + \;\hat k\) are two vectors such that \(\vec a = \vec b\)
∵ \(\vec a = \vec b\)
As we know that, two vectors \(\vec a \ and \ \vec b\)are said to be equal if and only if they have same direction and same magnitude.
So, in order to have same magnitude the corresponding coefficients of \(\hat i, \hat j \ and\ \hat k\) of both the vectors should be same.
⇒ a1 = 2, b2 = 3 and a3 = 1
Hence, option C is the correct answer.
Types of Vectors Question 9:
If the vectors \(\rm \vec{a}, \vec{b}\) are collinear and \(\rm \vec{a} = 2\hat{i} +6\hat{j} - 3\hat{k}\) and |b| = 14, then \(\rm \vec{b}\) is equal to?
Answer (Detailed Solution Below)
Types of Vectors Question 9 Detailed Solution
Concept:
Let \({\rm{\vec a}} = {\rm{x\;\vec i}} + {\rm{y\;\vec j}} + {\rm{z\;\vec k}}\)
Magnitude of the vector of a = \(\left| {{\rm{\vec a}}} \right| = {\rm{\;}}\sqrt {{{\rm{x}}^2} + {\rm{\;}}{{\rm{y}}^2} + {{\rm{z}}^2}} \)
Collinear vectors: Two vectors are collinear if they lie on the same line or parallel lines.
If \(\rm \vec{a}\) and \(\rm \vec{b}\) are collinear vectors then \(\rm \vec{b} = λ \vec{a}\)
Calculation:
Given:
vectors \(\rm \vec{a}, \vec{b}\) are collinear,
Therefore, \(\rm \vec{b} = λ \vec{a}\)
⇒ \(\rm \vec{b} = λ (2\hat{i} +6\hat{j} - 3\hat{k})\)
Given: magnitude of b = |b| = 14
⇒ \(|λ (2\hat{i} +6\hat{j} - 3\hat{k})| = 14\)
⇒ \(λ| (2\hat{i} +6\hat{j} - 3\hat{k})| = 14\)
⇒ \(λ \times \sqrt {2^2+6^2+(-3)^2} = 14\)
⇒ 7λ = 14
∴ λ = 2
Now, \(\rm \vec{b} = λ \vec{a} = λ (2\hat{i} +6\hat{j} - 3\hat{k}) = 2 (2\hat{i} +6\hat{j} - 3\hat{k})\)
Hence \(\rm \vec{b}= (4\hat{i} +12\hat{j} - 6\hat{k})\)
Types of Vectors Question 10:
If â, b̂ and ĉ are unit vectors and |â + b̂|2 = |b̂ + ĉ|2 = |ĉ + â|2 = 8, then |2â + b̂ + ĉ| is equal to
Answer (Detailed Solution Below)
Types of Vectors Question 10 Detailed Solution
Calculation:
Given, \(\vec a,\;\vec b\) and \(\vec c\) all unit vectors ---(A)
And
\({\left| {\vec a + \vec b} \right|^2} = {\left| {\vec b + \vec c} \right|^2} = {\left| {\vec c + \vec a} \right|^2} = 8\) ---(1)
Take,
\({\left| {\vec a + \vec b} \right|^2} = 8\)
\({\left| {\vec a} \right|^2} + {\left| {\vec b} \right|^2} + 2a \cdot b = 8\)
1 + 1 + 2 ab = 8 (ab \(\vec a\) is unit vector)
2ab = 6
ab = 3
take,
\({\left| {\vec b + \vec c} \right|^2} = 8\)
\({\left| {\vec b} \right|^2} + {\left| {\vec c} \right|^2} + 2bc = 8\)
b c = 3
Similarly, c a = 3
Take,
\(\vec x = \left| {2\vec a + \vec b + \vec c} \right|\)
On squaring both sides we get,
\({{\vec x}^2} = {\left| {2\vec a + \vec b + \vec c} \right|^2}\)
\({{\vec x}^2} = 4{\left| {\vec a} \right|^2} + {\left| {\vec b} \right|^2} + {\left| {\vec c} \right|^2} + 2\left| {2a \cdot b + 2a \cdot c + b \cdot c} \right|\)
\({{\vec x}^2} = 4 + 1 +1+ 2\left( {6 + 6 + 3} \right)\)
\(\vec x = \sqrt {36} \)
i.e |2â + b̂ + ĉ| = 6