Question
Download Solution PDFयदि \(\vec{a} = 4\hat{j}\) और \(\vec{b} = 3\hat{j} + 4\hat{k}\) है, तो \(\vec{b}\) के साथ \(\vec{a}\) के पूरक का सदिश रूप क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFसंकल्पना:
\(\vec{b}\) के साथ \(\vec{a}\) के पूरक का सदिश रूप = \(\rm \left(\dfrac {\vec a. \vec b}{|\vec b|^2}\right)\vec b\) है।
गणना:
दिया गया है, \(\vec{a} = 4\hat{j}\) और \(\vec{b} = 3\hat{j} + 4\hat{k}\)
⇒ \(\rm \vec a . \vec b = (4\vec j).(3\vec j + 4 \vec k)\)
⇒ \(\rm \vec a . \vec b = 12\)
और \(\rm |\vec b| = 5 \)
\(\vec{b}\) के साथ \(\vec{a}\) के पूरक का सदिश रूप = \(\rm \left(\dfrac {\vec a. \vec b}{|\vec b|^2}\right)\vec b\)
= \(\rm \dfrac {12}{25}(3\vec j + 4 \vec k)\)
अतः यदि \(\vec{a} = 4\hat{j}\) और \(\vec{b} = 3\hat{j} + 4\hat{k}\) है, तो \(\vec{b}\) के साथ \(\vec{a}\) के पूरक का सदिश रूप \(\rm \dfrac {12}{25}(3\vec j + 4 \vec k)\) है।
Last updated on Jun 12, 2025
->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.
-> NIMCET exam was conducted on June 8, 2025.
-> NIMCET 2025 admit card was out on June 3, 2025.
-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.
-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.