If  \( \tan \theta = \frac{7}{8} \), then evaluate \(\frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)(\cot \theta)}\)

This question was previously asked in
RRB NTPC Graduate Level CBT-I Official Paper (Held On: 06 Jun, 2025 Shift 1)
View all RRB NTPC Papers >
  1. \(\frac{8}{7}\)
  2. \(\frac{64}{49}\)
  3. \(\frac{7}{8}\)
  4. \(\frac{49}{64}\)

Answer (Detailed Solution Below)

Option 1 : \(\frac{8}{7}\)
Free
RRB NTPC Graduate Level Full Test - 01
2.4 Lakh Users
100 Questions 100 Marks 90 Mins

Detailed Solution

Download Solution PDF
- www.lessoinsdecolette.com

Given:

\(\tan\theta = \frac{7}{8}\)

Expression to evaluate: \(\dfrac{(1 + \sin\theta)(1 - \sin\theta)}{(1 + \cos\theta)(1 - \cos\theta)(\cot\theta)}\)

Formula used:

1. (a + b)(a - b) = a2 - b2

2. \(\sin^2\theta + \cos^2\theta = 1\)

\(1 - \sin^2\theta = \cos^2\theta\)

\(1 - \cos^2\theta = \sin^2\theta\)

3. \(\cot\theta = \dfrac{\cos\theta}{\sin\theta}\)

4. \(\cot\theta = \dfrac{1}{\tan\theta}\)

Calculations:

Simplify the numerator:

Numerator = \((1 + \sin\theta)(1 - \sin\theta)\)

⇒ Numerator = \(1^2 - \sin^2\theta\)

⇒ Numerator = \(1 - \sin^2\theta\)

⇒ Numerator = \(\cos^2\theta\)

Simplify the denominator:

Denominator = \((1 + \cos\theta)(1 - \cos\theta)(\cot\theta)\)

⇒ Denominator = \((1^2 - \cos^2\theta)(\cot\theta)\)

⇒ Denominator = \((1 - \cos^2\theta)(\cot\theta)\)

⇒ Denominator = \(\sin^2\theta \times \cot\theta\)

Substitute \(\cot\theta = \dfrac{\cos\theta}{\sin\theta}\):

⇒ Denominator = \(\sin^2\theta \times \dfrac{\cos\theta}{\sin\theta}\)

⇒ Denominator = \(\sin\theta \cos\theta\)

Now, substitute the simplified numerator and denominator into the expression:

Expression = \(\dfrac{\cos^2\theta}{\sin\theta \cos\theta}\)

Cancel out  \(\cos\theta\) from numerator and denominator:

⇒ Expression = \(\dfrac{\cos\theta}{\sin\theta}\)

⇒ Expression = \(\cot\theta\)

Given \(\tan\theta = \dfrac{7}{8}\).

Since \(\cot\theta = \dfrac{1}{\tan\theta}\):

⇒ Expression = \(\dfrac{1}{\frac{7}{8}}\)

⇒ Expression = \(\dfrac{8}{7}\)

∴ The value of the expression is \(\dfrac{8}{7}\).

Latest RRB NTPC Updates

Last updated on Jul 10, 2025

-> RRB NTPC Under Graduate Exam Date 2025 has been released on the official website of the Railway Recruitment Board.

-> The RRB NTPC Admit Card will be released on its official website for RRB NTPC Under Graduate Exam 2025.

-> Candidates who will appear for the RRB NTPC Exam can check their RRB NTPC Time Table 2025 from here. 

-> The RRB NTPC 2025 Notification released for a total of 11558 vacancies. A total of 3445 Vacancies have been announced for Undergraduate posts like Commercial Cum Ticket Clerk, Accounts Clerk Cum Typist, Junior Clerk cum Typist & Trains Clerk.

-> A total of 8114 vacancies are announced for Graduate-level posts in the Non-Technical Popular Categories (NTPC) such as Junior Clerk cum Typist, Accounts Clerk cum Typist, Station Master, etc.

-> Prepare for the exam using RRB NTPC Previous Year Papers.

-> Get detailed subject-wise UGC NET Exam Analysis 2025 and UGC NET Question Paper 2025 for shift 1 (25 June) here

Get Free Access Now
Hot Links: teen patti bonus teen patti cash game teen patti go teen patti club apk teen patti rich