Question
Download Solution PDFभिंतीला टेकलेली शिडी क्षितिज समांतर जमिनीशी θ कोन करते, जेथे tan θ = \(\frac{15}{8}\). जर शिडीच्या वरच्या भागाची भिंतीपासूनची उंची 30 मी असेल, तर शिडीच्या पायथ्याचे भिंतीपासूनचे अंतर (मी मध्ये) शोधा.
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिलेले:
tan \(\theta = \frac{15}{8}\)
जमिनीपासून शिडीची उंची (विरुद्ध बाजू) = 30 मी
वापरलेले सूत्र:
tan \(\theta = \frac{\text{उंची}}{\text{पाया}}\)
\(\Rightarrow \text{पाया} = \frac{\text{उंची}}{\tan \theta}\)
गणना:
tan \(\theta = \frac{\text{उंची}}{\text{पाया}}\)
\(\frac{15}{8}\) \( = \frac{\text{30}}{\text{पाया}}\)
⇒ पाया = \(\frac{30}{\frac{15}{8}} = 2 × 8 = 16\) मी
∴ योग्य उत्तर 16 मीटर आहे.
Last updated on Jul 21, 2025
-> RRB NTPC UG Exam Date 2025 released on the official website of the Railway Recruitment Board. Candidates can check the complete exam schedule in the following article.
-> SSC Selection Post Phase 13 Admit Card 2025 has been released @ssc.gov.in
-> The RRB NTPC Admit Card CBT 1 will be released on its official website for RRB NTPC Under Graduate Exam 2025.
-> The RRB NTPC 2025 Notification released for a total of 11558 vacancies. A total of 3445 Vacancies have been announced for Undergraduate posts while a total of 8114 vacancies are announced for Graduate-level posts in the Non-Technical Popular Categories (NTPC).
-> Prepare for the exam using RRB NTPC Previous Year Papers.
-> UGC NET June 2025 Result has been released by NTA on its official site